tf中 multiply 和 matmul 的区别

本文详细介绍了 TensorFlow 中的 `tf.multiply` 和 `tf.matmul` 两个操作的区别。`tf.multiply` 实现的是元素级乘法,要求输入的张量维度相同,支持广播;而 `tf.matmul` 则进行矩阵乘法,适用于两个矩阵的乘法运算,且要求符合矩阵乘法规则。两者在应用场景和计算方式上有显著不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

multiply: element-wise,x,y维数必须相同,否则报错,Returns x * y element-wise.

matmul: Multiplies matrix a by matrix b, producing a * b. 个人理解和numpy库里的np.dot用法相同

tf库解释:

1.tf.multiply

 

tf.multiply(
    x,
    y,
    name=None
)

Defined in tensorflow/python/ops/math_ops.py.

See the guide: Math > Arithmetic Operators

Returns x * y element-wise.

NOTE<a href="../tf/multiply"><code>tf.multiply</code></a> supports broadcasting. More about broadcasting here

Args:

  • x: A Tensor. Must be one of the following types: bfloat16halffloat32float64uint8int8uint16int16int32int64complex64complex128.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).

Returns:

Tensor. Has the same type as x.

2.tf.matmul

 

tf.matmul(
    a,
    b,
    transpose_a=False,
    transpose_b=False,
    adjoint_a=False,
    adjoint_b=False,
    a_is_sparse=False,
    b_is_sparse=False,
    name=None
)

Defined in tensorflow/python/ops/math_ops.py.

See the guide: Math > Matrix Math Functions

Multiplies matrix a by matrix b, producing a * b.

The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication arguments, and any further outer dimensions match.

Both matrices must be of the same type. The supported types are: float16float32float64int32complex64complex128.

Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True. These are False by default.

If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse or b_is_sparse flag to True. These are False by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes bfloat16 or float32.

For example:

 

# 2-D tensor `a`
# [[1, 2, 3],
#  [4, 5, 6]]
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])

# 2-D tensor `b`
# [[ 7,  8],
#  [ 9, 10],
#  [11, 12]]
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])

# `a` * `b`
# [[ 58,  64],
#  [139, 154]]
c = tf.matmul(a, b)


# 3-D tensor `a`
# [[[ 1,  2,  3],
#   [ 4,  5,  6]],
#  [[ 7,  8,  9],
#   [10, 11, 12]]]
a = tf.constant(np.arange(1, 13, dtype=np.int32),
                shape=[2, 2, 3])

# 3-D tensor `b`
# [[[13, 14],
#   [15, 16],
#   [17, 18]],
#  [[19, 20],
#   [21, 22],
#   [23, 24]]]
b = tf.constant(np.arange(13, 25, dtype=np.int32),
                shape=[2, 3, 2])

# `a` * `b`
# [[[ 94, 100],
#   [229, 244]],
#  [[508, 532],
#   [697, 730]]]
c = tf.matmul(a, b)

# Since python >= 3.5 the @ operator is supported (see PEP 465).
# In TensorFlow, it simply calls the `tf.matmul()` function, so the
# following lines are equivalent:
d = a @ b @ [[10.], [11.]]
d = tf.matmul(tf.matmul(a, b), [[10.], [11.]])

Args:

  • aTensor of type float16float32float64int32complex64complex128 and rank > 1.
  • bTensor with same type and rank as a.
  • transpose_a: If Truea is transposed before multiplication.
  • transpose_b: If Trueb is transposed before multiplication.
  • adjoint_a: If Truea is conjugated and transposed before multiplication.
  • adjoint_b: If Trueb is conjugated and transposed before multiplication.
  • a_is_sparse: If Truea is treated as a sparse matrix.
  • b_is_sparse: If Trueb is treated as a sparse matrix.
  • name: Name for the operation (optional).

Returns:

Tensor of the same type as a and b where each inner-most matrix is the product of the corresponding matrices in a and b, e.g. if all transpose or adjoint attributes are False:

output[..., i, j] = sum_k (a[..., i, k] * b[..., k, j]), for all indices i, j.

  • Note: This is matrix product, not element-wise product.

Raises:

  • ValueError: If transpose_a and adjoint_a, or transpose_b and adjoint_b are both set to True.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值