详细 https://blog.youkuaiyun.com/wopawn/article/details/52133338
RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化。
算法可以分为四步:
1)候选区域选择
Region Proposal是一类传统的区域提取方法,可以看作不同宽高的滑动窗口,通过窗口滑动获得潜在的目标图像,关于Proposal大家可以看下SelectiveSearch,一般Candidate选项为2k个即可,这里不再详述;
根据Proposal提取的目标图像进行归一化,作为CNN的标准输入。
2)CNN特征提取
标准CNN过程,根据输入进行卷积/池化等操作,得到固定维度的输出;
3)分类与边界回归
实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器);二是通过边界回归(bounding-box regression) 得到精确的目标区域,由于实际目标会产生多个子区域,旨在对完成分类的前景目标进行精确的定位与合并,避免多个检出。
RCNN存在三个明显的问题:
1)多个候选区域对应的图像需要预先提取,占用较大的磁盘空间;
2)针对传统CNN需要固定尺寸的输入图像,crop/warp(归一化)产生物体截断或拉伸,会导致输入CNN的信息丢失;
3)每一个ProposalRegion都需要进入CNN网络计算,上千个Region存在大量的范围重叠,重复的特征提取带来巨大的计算浪费。