SEnet --se module

这是SEnet 的特征融合部分,

import tensorflow as tf
from tflearn.layers.conv import global_avg_pool

class SE_layer():
    def __init__(self, x, training=True):
        self.training = training

    def Global_Average_Pooling(self, x):
        return global_avg_pool(x, name='Global_avg_pooling')

    def Fully_connected(self, x, units=3, layer_name='fully_connected') :
        with tf.name_scope(layer_name) :
            return tf.layers.dense(inputs=x, use_bias=False, units=units)

    def Relu(self, x):
        return tf.nn.relu(x)
    def Sigmoid(self, x) :
        return tf.nn.sigmoid(x)

    def squeeze_excitation_layer(self, input_x, ratio, layer_name):
        with tf.name_scope(layer_name) :
            squeeze = self.Global_Average_Pooling(input_x)

            excitation = self.Fully_connected(squeeze, units=int(input_x.shape[3])/ratio, layer_name=layer_name+'_fully_connected1')
            excitation = self.Relu(excitation)
            excitati
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值