这是SEnet 的特征融合部分,
import tensorflow as tf
from tflearn.layers.conv import global_avg_pool
class SE_layer():
def __init__(self, x, training=True):
self.training = training
def Global_Average_Pooling(self, x):
return global_avg_pool(x, name='Global_avg_pooling')
def Fully_connected(self, x, units=3, layer_name='fully_connected') :
with tf.name_scope(layer_name) :
return tf.layers.dense(inputs=x, use_bias=False, units=units)
def Relu(self, x):
return tf.nn.relu(x)
def Sigmoid(self, x) :
return tf.nn.sigmoid(x)
def squeeze_excitation_layer(self, input_x, ratio, layer_name):
with tf.name_scope(layer_name) :
squeeze = self.Global_Average_Pooling(input_x)
excitation = self.Fully_connected(squeeze, units=int(input_x.shape[3])/ratio, layer_name=layer_name+'_fully_connected1')
excitation = self.Relu(excitation)
excitati