The Euler function(hdoj --2824-欧拉函数)

本文介绍了一种使用欧拉函数计算指定范围内数值的方法,并提供了一个基于质数筛选算法的实现示例,该方法能够高效地计算从a到b范围内每个整数的欧拉函数之和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Euler function

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4518    Accepted Submission(s): 1879


Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
 

Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
 

Output
Output the result of (a)+ (a+1)+....+ (b)
 

Sample Input
  
3 100
 

Sample Output
  
3042
 

Source
 

Recommend
gaojie   |   We have carefully selected several similar problems for you:   2818  2825  2817  2822  2821


解析:(转)

定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目。

    例如:φ(8)=4,因为1357均和8互质。

性质:1.p是质数,φ(p)= p-1.

   2.n是质数pk次幂,φ(n)=(p-1)*p^(k-1)。因为除了p的倍数都与n互质

   3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n).

  根据这3条性质我们就可以推出一个整数的欧拉函数的公式。因为一个数总可以写成一些质数的乘积的形式。

  E(k)=(p1-1)(p2-1)...(pi-1)*(p1^(a1-1))(p2^(a2-1))...(pi^(ai-1))

    = k*(p1-1)(p2-1)...(pi-1)/(p1*p2*...*pi)

    = k*(1-1/p1)*(1-1/p2)...(1-1/pk)

在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(aN的质因素)

  若( N%a ==0&&(N/a)%a ==0)则有:E(N)= E(N/a)*a;

  若( N%a ==0&&(N/a)%a !=0)则有:E(N)= E(N/a)*(a-1);

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=3000010;
int prime[N],isprime[N];
int phi[N];
void get_phi()
{
    int i,j,cnt=0;
    for(i=2;i<N;i++)
	{
        if(isprime[i]==0)
		{
            prime[cnt++]=i;
            phi[i]=i-1;
        }
        for(j=0;j<cnt && i*prime[j]<N;j++)
		{     //注意这里,i*prime[j]<N 可换成 prime[j]<=N/i(带等号)
            isprime[i*prime[j]]=1;
            if(i%prime[j]==0)
                phi[i*prime[j]]=phi[i]*prime[j];
            else
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
}
int main()
{
    long long sum;
    int a,b;
    get_phi();
    while(~scanf("%d%d",&a,&b))
	{
        sum=0;
        for(int i=a;i<=b;i++)
        sum+=phi[i];
        cout<<sum<<endl;
    }
    return 0;
}

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值