机器学习系列之(四)-- KNN

本文围绕K最近邻(KNN)算法展开,作者在学习斯坦福视觉课程时接触到该算法。先介绍了最近邻算法,通过计算新样本与训练集样本的欧氏距离分类;接着阐述K最近邻算法,它增加了投票过程,根据K值不同决定待分类样本的类别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本文参考内容来源:https://blog.youkuaiyun.com/x603560617/article/details/83621324
https://blog.youkuaiyun.com/qq_36330643/article/details/77532161
最近在学习斯坦福的视觉课程,第一个主要内容就是通过KNN算法来对图像进行分类,效果当然很不好,但是作为大家接触到的第一个机器学习算法,还是有必要对其进行一次深入的了解。
K最近邻(K-Nearest Neighbor,KNN)算法,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。

最近邻(nearest neighbor)

在介绍K-最近邻算法之前,有必要介绍一下最近邻,考虑一下问题:
给出的条件:

  1. 训练数据集:在这里插入图片描述
    在这里插入图片描述
    2.需要进行分类的新样本的特征向量:x

目标:根据训练数据集和所给的新样本的特征向量,预测出新样本的所属类别。

使用最近邻的解决方法:
计算x与这N个训练集中每个样本的特征向量之间的欧氏距离,找到最小的距离,查看这个最小距离所属样本的类别,就把x归为这一类别。
我觉得可以用“近朱者赤近墨者黑”这一成语来概括这一算法。
近邻算法没有显性的学习过程,只是机械的进行比较。

欧氏距离

近邻算法中的一个核心概念就是两个样本之间的距离度量方式,其采用的是欧氏距离。
在这里插入图片描述

K最近邻

相对于最近邻算法,K最近邻算法增加了一个投票过程,这里我觉得与其叫做叫做“投票”,还不如叫“统计排序”过程,下面通过举例子来进行其原理的表述:
下图中有两种类型的样本数据,一类是蓝色的正方形,另一类是红色的三角形,中间那个绿色的圆形是待分类数据:
在这里插入图片描述
当我们设置K=3时,那么离绿色点最近的有2个红色的三角形和1个蓝色的正方形,这三个点进行投票,于是绿色的待分类点就属于红色的三角形。而如果K=5,那么离绿色点最近的有2个红色的三角形和3个蓝色的正方形,这五个点进行投票,于是绿色的待分类点就属于蓝色的正方形。

内容概要:本文围绕直流微电网中带有恒功率负载(CPL)的DC/DC升压转换器的稳定控制问题展开研究,提出了一种复合预设性能控制策略。首先,通过精确反馈线性化技术将非线性不确定的DC转换器系统转化为Brunovsky标准型,然后利用非线性扰动观测器评估负载功率的动态变化和输出电压的调节精度。基于反步设计方法,设计了具有预设性能的复合非线性控制器,确保输出电压跟踪误差始终在预定义误差范围内。文章还对比了多种DC/DC转换器控制技术如脉冲调整技术、反馈线性化、滑模控制(SMC)、主动阻尼法和基于无源性的控制,并分析了它们的优缺点。最后,通过数值仿真验证了所提控制器的有效性和优越性。 适合人群:从事电力电子、自动控制领域研究的学者和工程师,以及对先进控制算法感兴趣的研究生及以上学历人员。 使用场景及目标:①适用于需要精确控制输出电压并处理恒功率负载的应用场景;②旨在实现快速稳定的电压跟踪,同时保证系统的鲁棒性和抗干扰能力;③为DC微电网中的功率转换系统提供兼顾瞬态性能和稳态精度的解决方案。 其他说明:文中不仅提供了详细的理论推导和算法实现,还通过Python代码演示了控制策略的具体实现过程,便于读者理解和实践。此外,文章还讨论了不同控制方法的特点和适用范围,为实际工程项目提供了有价值的参考。
内容概要:该论文介绍了一种名为偏振敏感强度衍射断层扫描(PS-IDT)的新型无参考三维偏振敏感计算成像技术。PS-IDT通过多角度圆偏振光照射样品,利用矢量多层光束传播模型(MSBP)和梯度下降算法迭代重建样品的三维各向异性分布。该技术无需干涉参考光或机械扫描,能够处理多重散射样品,并通过强度测量实现3D成像。文中展示了对马铃薯淀粉颗粒和缓步类动物等样品的成功成像实验,并提供了Python代码实现,包括系统初始化、前向传播、多层传播、重建算法以及数字体模验证等模块。 适用人群:具备一定光学成像和编程基础的研究人员,尤其是从事生物医学成像、材料科学成像领域的科研工作者。 使用场景及目标:①研究复杂散射样品(如生物组织、复合材料)的三维各向异性结构;②开发新型偏振敏感成像系统,提高成像分辨率和对比度;③验证和优化计算成像算法,应用于实际样品的高精度成像。 其他说明:PS-IDT技术相比传统偏振成像方法具有明显优势,如无需干涉装置、无需机械扫描、可处理多重散射等。然而,该技术也面临计算复杂度高、需要多角度数据采集等挑战。文中还提出了改进方向,如采用更高数值孔径(NA)物镜、引入深度学习超分辨率技术等,以进一步提升成像质量和效率。此外,文中提供的Python代码框架为研究人员提供了实用的工具,便于理解和应用该技术。
### 关于头歌平台中KNN算法的机器学习教程与实例 #### 头歌平台概述 头歌(Tougo)是一个专注于计算机科学教育的学习平台,提供丰富的在线课程资源和实践环境。对于机器学习领域的内容,尤其是像KNN这样经典的算法,通常会通过理论讲解、代码实现以及实际应用案例相结合的方式进行教学。 #### KNN算法简介 KNN(K-Nearest Neighbors)是一种基于实例的学习方法,既可用于分类也可用于回归分析。其核心思想是:给定一个测试样本,在训练集中找到与其最近的K个邻居,并依据这K个邻居的信息来进行决策[^2]。 #### KNN算法的主要步骤 1. 数据预处理阶段,包括标准化或归一化操作以消除不同特征间量纲差异的影响。 2. 计算待测样本到所有已知样本的距离,常用欧氏距离或其他形式的距离度量方式。 3. 找出距离最小的前K个样本作为近邻点集合。 4. 对于分类任务采用投票机制决定最终类别;而对于回归任务则取平均值或者加权平均值得出结果。 #### 距离计算公式示例 以下是两种常见距离公式的Python实现: ```python import numpy as np def euclidean_distance(x, y): """欧几里得距离""" return np.sqrt(np.sum((np.array(x) - np.array(y)) ** 2)) def manhattan_distance(x, y): """曼哈顿距离""" return np.sum(abs(np.array(x) - np.array(y))) ``` 上述函数分别实现了欧氏距离和曼哈顿距离的计算过程。 #### 实际应用场景举例 假设我们有一个简单的电影分类场景,其中每部影片由两个属性描述:“拥抱次数”和“打斗次数”。利用已有标注的数据集可以构建模型并预测未知标签的新样例所属类型[^4]。 #### 可能存在的挑战及优化方向 尽管KNN易于理解和实现,但在大规模数据集上的性能可能较差,因为每次都需要遍历整个数据库寻找最接近的邻居。因此可以通过KD树索引结构加速查询效率,或是引入降维技术减少维度灾难带来的影响[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值