以下解题过程都是由互联网收集或自己计算而来,并不保证正确,如有疑问可以留言讨论
题目
假设两个部件的寿命T1和T2服从独立的指数分布,参数分别为α和β.计算
a.P(T1>T2)
b.P(T1>2T2)
解题思路
a.P(T1>T2)
根据题意
P(T1>T2)=∬t1>t2f(t1,t2)dt2dt1=∫0∞∫0t1αe−αt1∗βe−βt2dt2dt1=∫0∞αe−αt1∗β∗1−β[e−βy]0t1dt2=∫0∞(−αe−αt1e−βx+α−αt1)dt1=∫0∞(α−αt1)dt1−∫0∞αe−αt1e−βxdt1=1−αα+β=βα+β\begin{aligned}
P(T_{1}>T_{2})&=\iint_{t_{1}>t_{2}} f(t_{1},t_{2})dt_{2}dt_{1}\\
&=\int_{0}^{\infty}\int_{0}^{t_{1}}αe^{-αt_{1}}*βe^{-βt_{2}}dt_{2}dt_{1}\\
&=\int_{0}^{\infty}αe^{-αt_{1}}*β*\frac{1}{-β}\left[e^{-βy}\right]_{0}^{t_{1}} dt_{2}\\
&=\int_{0}^{\infty}(-αe^{-αt_{1}}e^{-βx}+α^{-αt_{1}})dt_{1}\\
&=\int_{0}^{\infty}(α^{-αt_{1}})dt_{1}-\int_{0}^{\infty}αe^{-αt_{1}}e^{-βx}dt_{1}\\
&=1-\frac{α}{α+β}\\
&=\frac{β}{α+β}
\end{aligned}
P(T1>T2)=∬t1>t2f(t1,t2)dt2dt1=∫0∞∫0t1αe−αt1∗βe−βt2dt2dt1=∫0∞αe−αt1∗β∗−β1[e−βy]0t1dt2=∫0∞(−αe−αt1e−βx+α−αt1)dt1=∫0∞(α−αt1)dt1−∫0∞αe−αt1e−βxdt1=1−α+βα=α+ββ
b.P(T1>2T2)
P(T1>2T2)=∬t1>2t2f(t1,t2)dt2dt1=∫0∞∫0t12αe−αt1∗βe−βt2dt2dt1=β2α+β\begin{aligned} P(T_{1}>2T_{2})&=\iint_{t_{1}>2t_{2}} f(t_{1},t_{2})dt_{2}dt_{1}\\ &=\int_{0}^{\infty}\int_{0}^{\frac{t_{1}}{2}}αe^{-αt_{1}}*βe^{-βt_{2}}dt_{2}dt_{1}\\ &=\frac{β}{2α+β} \end{aligned} P(T1>2T2)=∬t1>2t2f(t1,t2)dt2dt1=∫0∞∫02t1αe−αt1∗βe−βt2dt2dt1=2α+ββ