特征值与特征向量2

本文深入探讨了特征向量的概念及其在矩阵变换中的几何意义,阐述了特征向量如何通过变换保持方向不变,仅进行长度上的伸缩。文章进一步解析了特征向量与特征值的关系,以及它们在不同几何变换(如镜像对称、旋转)下的表现。此外,文章还展示了特征向量和特征值在PCA、Google PageRank、人脸识别等实际应用中的重要性,揭示了它们在数学、物理、材料科学等领域的广泛影响力。

特征向量体现样本之间的相关程度,特征值则反映了散射强度。 

特征向量的几何意义.矩阵(既然讨论特征向量的问题.当然是方阵.这里不讨论广义特征向量的概念)乘以一个向量的结果仍是同维数的一个向量.因此.矩阵乘法 对应了一个变换.把一个向量变成同维数的另一个向量.那么变换的效果是什么呢?这当然与方阵的构造有密切关系.比如可以取适当的二维方阵.使得这个变换的 效果就是将平面上的二维向量逆时针旋转30度.这时我们可以问一个问题.有没有向量在这个变换下不改变方向呢?可以想一下.除了零向量.没有其他向量可以在平面上旋转30度而不改变方向的.所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能 是零向量).所以一个变换的特征向量是这样一种向量.它经过这种特定的变换后保持方向不变.只是进行长度上的伸缩而已(再想想特征向量的原始定义Ax= cx.你就恍然大悟了.看到了吗?cx是方阵A对向量x进行变换后的结果.但显然cx和x的方向相同).而且x是特征向量的话.ax也是特征向量(a是标 量且不为零).所以所谓的特征向量不是一个向量而是一个向量族. 另外.特征值只不过反映了特征向量在变换时的伸缩倍数而已.对一个变换而言.特征向量指明的方向才是很重要的.特征值不是那么重要.虽然我们求这两个量时 先求出特征值.但特征向量才是更本质的东西!  

比如平面上的一个变换.把一个向量关于横轴做镜像对称变换.即保持一个向量的横坐标不变.但纵坐标取相反数.把这个变换表示为矩阵就是[1 0,0 -1].其中分号表示换行.显然[1 0,0 -1]*[a b]'=[a -b]'.其中上标'表示取转置.这正是我们想要的效果.那么现在可以猜一下了.这个矩阵的特征向量是什么?想想什么向量在这个变换下保持方向不变.显 然.横轴上的向量在这个变换下保持方向不变(记住这个变换是镜像对称变换.那镜子表面上(横轴上)的向量当然不会变化).所以可以直接猜测其特征向量是 [a 0]'(a不为0).还有其他的吗?有.那就是纵轴上的向量.这时经过变换后.其方向反向.但仍在同一条轴上.所以也被认为是方向没有变化。 

综上,特征值只不过反映了特征向量在变换时的伸缩倍数而已,对一个变换而言,特征向量指明的方向才是很重要的,特征值似乎不是那么重要;但是,当我们引用了Spectral theorem(谱定律)的时候,情况就不一样了。  

Spectral theorem的核心内容如下:一个线性变换(用矩阵乘法表示)可表示为它的所有的特征向量的一个线性组合,其中的线性系数就是每一个向量对应的特征值,写成公式就是: T(V)=λ1(V1.V)V1+λ2(V2.V)V2+λ3(V3.V)V3+...  

从这里我们可以看出,一个变换(矩阵)可由它的所有特征向量完全表示,而每一个向量所对应的特征值,就代表了矩阵在这一向量上的贡献率——说的通俗一点就是能量(power),至此,特征值翻身做主人,彻底掌握了对特征向量的主动:你所能够代表这个矩阵的能量高低掌握在我手中,你还吊什么吊?  

我们知道,一个变换可由一个矩阵乘法表示,那么一个空间坐标系也可视作一个矩阵,而这个坐标系就可由这个矩阵的所有特征向量表示,用图来表示的话,可以想象就是一个空间张开的各个坐标角度,这一组向量可以完全表示一个矩阵表示的空间的“特征”,而他们的特征值就表示了各个角度上的能量(可以想象成从各个角 度上伸出的长短,越长的轴就越可以代表这个空间,它的“特征”就越强,或者说显性,而短轴自然就成了隐性特征),因此,通过特征向量/值可以完全描述某一 几何空间这一特点,使得特征向量与特征值在几何(特别是空间几何)及其应用中得以发挥。  

关于特征向量(特别是特征值)的应用实在是太多太多,近的比如俺曾经提到过的PCA方法,选取特征值最高的k个特征向量来表示一个矩阵,从而达到降维分 析+特征显示的方法;近的比如Google公司的成名作PageRank,也是通过计算一个用矩阵表示的图(这个图代表了整个Web各个网页“节点”之间的关联)的特征向量来对每一个节点打“特征值”分;再比如很多人脸识别,数据流模式挖掘分析等方面,都有应用,

有兴趣的兄弟可以参考IBM的Spiros 在VLDB„ 05,SIGMOD ‟06上的几篇文章。  

特征向量不仅在数学上,在物理,材料,力学等方面(应力、应变张量)都能一展拳脚,有老美曾在一本线代书里这样说过“有振动的地方就有特征值和特征向量”,确实令人肃然起敬+毛骨悚然...... 

  

特征值就是那个矩阵所对应的一元多次方程组的根 

特征值表示一个矩阵的向量被拉伸或压缩的程度,例如特征值为1111111111,则表示经过变换以后,向量没有被拉伸,在物理上表示做刚体运动,相当与整体框架做了变动,但内部结构没有变化. 

量子力学中,矩阵代表力学量,矩阵的特征向量代表定态波函数,矩阵的特征植代表力学量的某个可能的观测值。 

一个向量(或函数)被矩阵相乘,表示对这个向量做了一个线性变换。如果变换后还是这个向量本身乘以一个常数,这个常数就叫特征值。这是特征值的数学涵义; 

至于特征值的物理涵义,根据具体情况有不同的解释。比如动力学中的频率,稳定分析中的极限荷载,甚至应力分析中的主应力 

矩阵的特征值要想说清楚还要从线性变换入手,把一个矩阵当作一个线性变换在某一组基下的矩阵,最简单的线性变换就是数乘变换,求特征值的目的就是看看一个线性变换对一些非零向量的作用是否能够相当于一个数乘变换,特征值就是这个数乘变换的变换比,这样的一些非零向量就是特征向量,其实我们更关心的是特征向量,希望能把原先的线性空间分解成一些和特征向量相关的子空间的直和,这样我们的研究就可以分别限定在这些子空间上来进行,这和物理中在研究运动的时候将运动分解成水平方向和垂直方向的做法是一个道理! 

用matlab求矩阵最大特征值的特征向量 用函数[V,D]=eig(A) 

矩阵D的对角元存储的是A的所有特征值, 而且是从小到大排列的 

矩阵V的每一列存储的是相应的特征向量 所以应该是V的最后一个列 

就是最大特征值的特征向量   

特征向量-定义   

数学上,线性变换的特征向量(本征向量)是一个非退化的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。图1给出了一幅图像的例子。一个变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。 

这些概念在纯数学和应用数学的很多领域发挥着巨大的作用—在线性代数,泛函分析,甚至在一些非线性的情况中也有着显著的重要性。 

“特征”一词来自德语的eigen。1904年希尔伯特首先在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。eigen一词可翻译为“自身的”,“特定于...的”,“有特征的”或者“个体的”—这强调了特征值对于定义特定的变换有多重要。 

空间上的变换—如平移(移动原点),旋转,反射,拉伸,压缩,或者这些变换的组合;以及其它变换—可以通过它们在向量上的作用来显示。向量可以用从一点指向另一点的箭头来表示。

 

矩阵 

特征向量-性质(1)   

变换的特征向量是指在变换下不变或者简单地乘以一个缩放因子的非零向量。 特征向量的特征值是它所乘的那个缩放因子。 

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。 

变换的主特征向量是对应特征值最大的特征向量。 特征值的几何重次是相应特征空间的维数。 

有限维向量空间上一个变换的谱是其所有特征值的集合。 

例如,三维空间旋转的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转的谱当中唯一的实特征值。 

特征向量-参看:特征平面   例子 

随着地球的自转,每个从地心往外指的箭头都在旋转,除了在转轴上的那些箭头。考虑地球在一小时自转后的变换:地心指向地理南极的箭头是这个变换的一个特征向量,但是从地心指向赤道任何一处的箭头不会是一个特征向量。因为指向极点的箭头没有被地球的自转拉伸,它的特征值是1。 

另一个例子是,薄金属板关于一个固定点均匀伸展,使得板上每一个点到该固定点的距离翻倍。这个伸展是一个有特征值2的变换。从该固定点到板上任何一点的向量是一个特征向量,而相应的特征空间是所有这些向量的集合。 

但是,三维几何空间不是唯一的向量空间。例如,考虑两端固定的拉紧的绳子,就像弦乐器的振动弦那样(图2.)。振动弦的原子到它们在弦静止时的位置之间的带符号那些距离视为一个空间中的一个向量的分量,那个空间的维数就是弦上原子的个数。 

如果考虑绳子随着时间流逝发生的变换,它的特征向量,或者说特征函数(如果将绳子假设为一个连续媒介),就是它的驻波—也就是那些通过空气的传播让人们听到弓弦和吉他的拨动声的振动。驻波对应于弦的特定振动,它们使得弦的形状随着时间变化而伸缩一个因子(特征值)。和弦相关的该向量的每个分量乘上了一个依赖于时间的因子。驻波的振幅(特征值)在考虑到阻尼的情况下逐渐减弱。因此可以将每个特征向量对应于一个寿命,并将特征向量的概念和共振的概念联系起来。 

特征向量-特征值方程   

从数学上看,如果向量v与变换满足 

则称向量v是变换的一个特征向量,λ是相应的特征值。其中是将变换作用于v得到的向量。这一等式被称作“特征值方程”。 

假设是一个线性变换,那么v可以由其所在向量空间的一组基表示为: 

其中vi是向量在基向量上的投影(即坐标),这里假设向量空间为n 维。由此,可以直接以坐标向量表示。利用基向量,线性变换也可以用一个简单的矩阵乘法表示。上述的特征值方程可以表示为: 

但是,有时候用矩阵形式写下特征值方程是不自然甚或不可能的。例如在向量空间是无穷维的时候,上述的弦的情况就是一例。取决于变换和它所作用的空间的性质,有时将特征值方程表示为一组微分方程

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)数学优化概率(MOP)动态控制搜索过程,在全局探索局部开发之间实现平衡。文章详细解析了算法的初始化、勘探开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化并行计算等改进策略。; 适合人群:具备一定Python编程基础优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOAMOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值