
data science
文章平均质量分 52
Lupin123123
这个作者很懒,什么都没留下…
展开
-
合并不同时间频率的数据 pandas join实现
import pandas as pdimport numpy as npimport datetimeGitHub代码链接先给数据都加上以月为单位的时间indextimes = pd.date_range(periods=165, freq='M', end='2020/5')times = times.to_list()times.reverse()times =pd.to_datetime(times)times = times.strftime('%Y-%m')df =原创 2022-04-18 01:14:16 · 2085 阅读 · 0 评论 -
911数据中不同月份不同类型的电话的次数的变化情况
import pandas as pdimport numpy as npfrom matplotlib import pyplot as plt一、加载数据并把时间字符串转为时间类型设置为索引df = pd.read_csv("./911.csv")df["timeStamp"] = pd.to_datetime(df["timeStamp"])二、添加列,表示分类temp_list = df["title"].str.split(": ").tolist()cate_list = [原创 2022-04-12 01:30:16 · 162 阅读 · 0 评论 -
量化2015-2017年间911呼叫数与年份的关系
import pandas as pdimport numpy as npfrom matplotlib import pyplot as plt一、加载数据df = pd.read_csv("./911.csv")df["timeStamp"] = pd.to_datetime(df["timeStamp"])print(type(df["timeStamp"]))df.set_index("timeStamp", inplace=True)df.head(3)<class '原创 2022-04-12 01:21:21 · 167 阅读 · 0 评论 -
统计2015-2017年间911中的类别
import pandas as pdimport numpy as np一、加载数据df = pd.read_csv(r"911.csv")df.head(3) lat lng desc zip title timeStamp twp addr e 0 40.297876 -75.58原创 2022-04-12 00:49:34 · 219 阅读 · 0 评论 -
量化5个城市的PM2.5随时间的变化情况
import pandas as pdimport numpy as npimport matplotlib.pyplot as plt一、加载数据bj = pd.read_csv(r"PM2.5\BeijingPM20100101_20151231.csv")cd = pd.read_csv(r"PM2.5\ChengduPM20100101_20151231.csv")gz = pd.read_csv(r"PM2.5\GuangzhouPM20100101_20151231.csv")s原创 2022-04-12 00:32:53 · 231 阅读 · 0 评论 -
量化PM2.5数据
import pandas as pdfrom matplotlib import pyplot as pltfile_path = "./PM2.5/BeijingPM20100101_20151231.csv"df = pd.read_csv(file_path)df.head(5) No year month day hour season PM_Dongsi原创 2022-04-11 23:52:27 · 1700 阅读 · 0 评论 -
超定方程的求解
今天做排队论作业,要求解一个超定方程组,我本来以为直接用sympy库的linsolve()函数一部搞定就行了,结果求不出来,我估计是因为误差的原因import numpy as npfrom sympy import *A = np.array([[-0.75, 0.25, 0, 0], [0.2, -0.8, 0.25, 0], [0.12, 0.12, -0.8, 0.25], [0.43, 0.43, 0.55, -原创 2022-03-30 23:38:44 · 407 阅读 · 0 评论 -
pandas+plt操作练习(统计高等数学竞赛获奖)
import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom matplotlib import font_managerfile_path = r"C:\Users\Administrator\Desktop\data analysis\附件:获奖学生名单.xlsx"df = pd.read_excel(file_path, header=1, sheet_name=0)myfont = font_manag原创 2022-03-25 16:22:07 · 1683 阅读 · 0 评论