深度学习的程序实例

以下是一个使用深度学习的程序实例:

import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import RMSprop

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 数据预处理
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255

# 类别标签进行One-Hot编码
y_train = tf.keras.utils.to_categorical(y_train, 10)
y_test = tf.keras.utils.to_categorical(y_test, 10)

# 构建深度学习模型
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))

# 编译模型
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# 训练模型
batch_size = 128
epochs = 10
history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_data=(x_test, y_test))

# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

上述代码是一个简单的手写数字识别程序,使用了深度学习模型进行训练和预测。首先,通过mnist.load_data()函数加载了MNIST数据集,数据集包含了手写数字的图像和对应的标签。

然后,对数据进行预处理,包括将图像数据转换为浮点数并归一化,以及对标签进行One-Hot编码。

接下来,使用Sequential()创建了一个序列模型,并添加了两个全连接层和一个Dropout层。模型通过RMSprop优化器和交叉熵损失函数进行编译。

然后,使用fit()函数训练模型,并将训练数据和测试数据作为输入。训练过程中,可以指定批次大小、训练轮数等参数。

最后,使用evaluate()函数评估模型在测试数据上的性能,并打印出损失值和准确率。

这个程序使用深度学习模型对手写数字图像进行分类,可以实现较高的准确率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丨封尘绝念斩丨

感谢老铁,加油程序猿。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值