知识点:热力图和子图的绘制
- 介绍了热力图的绘制方法
- 介绍了子图的绘制方法
- 介绍了enumerate()函数
import pandas as pd
dt = pd.read_csv('data.csv')
将 Years in current job 和 Home Ownership 列映射为数字,绘制箱线图,数据至少要是数值,否则报错
查看 Years in current job 下的值:
dt['Years in current job'].value_counts()
输出:
Years in current job
10+ years 2332
2 years 705
3 years 620
< 1 year 563
5 years 516
1 year 504
4 years 469
6 years 426
7 years 396
8 years 339
9 years 259
Name: count, dtype: int64
# 创建映射字典
mapping = {
"Home Ownership": {
'Home Mortgage': 3,
'Rent': 1,
'Own Home': 0,
'Have Mortgage': 2
},
"Years in current job":{
'< 1 year':0,
'1 year':1,
'2 years':2,
'3 years':3,
'4 years':4,
'5 years':5,
'6 years':6,
'7 years':7,
'8 years':8,
'9 years':9,
'10+ years':10
}
}
# map()映射
dt['Home Ownership'] = dt['Home Ownership'].map(mapping['Home Ownership'])
dt['Years in current job'] = dt['Years in current job'].map(mapping['Years in current job'])
查看映射后的效果:
# 查看映射后的效果
dt.head(10)
输出:

一、绘制热力图
热力图本质上只能对连续值进行处理,不适合处理数值型的离散值
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# 连续特征 continuous_features
continuous_features=[
'Annual Income',
'Years in current job',
'Number of Open Accounts',
'Years of Credit History',
'Maximum Open Credit',
'

最低0.47元/天 解锁文章
670

被折叠的 条评论
为什么被折叠?



