SVM

##svm##
svm和逻辑回归一样,也是用来学习得到一个决策边界(decision bundary)的,只不过在某些情况下比逻辑回归更加有效。
###1.引子-逻辑回归###
hθ(x)=11+exp⁡(−θTX)h_{\theta}(x) = \frac{1}{1+\exp(-\theta^TX)}hθ(x)=1+exp(θTX)1
对于该假设:

  • if y = 1,then hθ(x)=1h_{\theta}(x) = 1hθ(x)=1,θT\theta^TθTx>>0
  • if y = 0,then hθ(x)=0h_{\theta}(x)=0hθ(x)=0 ,θT\theta^TθTx<<0
    cost function is:
  • cost=−ylog11+exp(−z)−(1−y)log(1−11+exp(−z))cost = -ylog{\frac{1}{1+exp(-z)}}-(1-y)log(1-\frac{1}{1+exp(-z)})cost=ylog1+exp(z)1(1y)log(11+exp(z)1)
    对cost进行优化:
    minθ1m[∑i=1my(i)(−log⁡hθ(x(i))+(1−y(i))(−log⁡(1−hθ(x(i)))))]+λ2m∑j=1nθj2min_{\theta} \frac{1}{m}[\sum_{i=1}^{m} y^{(i)}(-\log h_\theta (x^{(i)})+(1-y^{(i)})(-\log (1-h_\theta (x^{(i)}))))] + \frac{\lambda}{2m}\sum_{j=1}^n \theta_j^2minθm1[i=1my(i)(loghθ(x(i))+(1y(i))(log(1hθ(x(i)))))]+2mλj=1nθj2
    ###2. svm###
    在svm中,去除1m\frac{1}{m}m1这一项(仅是为了计算方便),设:
    cost1(θTx(i))cost_1(\theta^Tx^{(i)})cost1(θTx(i)) = y(i)(−log⁡hθ(x(i)))y^{(i)}(-\log h_{\theta}(x^{(i)}))y(i)(loghθ(x(i)))
    cost0(θTx(i))cost_0(\theta^Tx^{(i)})cost0(θTx(i)) = (1−y(i))(−log⁡(1−hθ(x(i))))(1-y^{(i)})(-\log (1-h_{\theta}(x^{(i)})))(1y(i))(log(1hθ(x(i))))
    则优化目标变为:
    minθ∑i=1m[y(i)cost1(θTx(i))+(1−y(i))cost0(θTx(i))]+λ2∑j=1nθj2min_{\theta} \sum_{i=1}^{m} [y^{(i)}cost_1(\theta^Tx^{(i)})+(1-y^{(i)})cost_0(\theta^Tx^{(i)})] + \frac{\lambda}{2}\sum_{j=1}^n \theta_j^2minθi=1m[y(i)cost1(θTx(i))+(1y(i))cost0(θTx(i))]+2λj=1nθj2
    在逻辑回归中,A+λBA+\lambda BA+λB:λ\lambdaλ越大,则赋予B更大的权重,相对B对该式影响越小,所以增大λ\lambdaλ有利于调整B对公式的计算结果的影响.
    在svm中,CA+BCA + BCA+B;C越小,则赋予B更大的权重,效果与逻辑回归中一样。所以,可以将C设为1λ\frac{1}{\lambda}λ1。则,优化目标可以修改为:
    minθC∑i=1m[y(i)cost1(θTx(i))+(1−y(i))cost0(θTx(i))]+12∑j=1nθj2min_{\theta} C\sum_{i=1}^{m} [y^{(i)}cost_1(\theta^Tx^{(i)})+(1-y^{(i)})cost_0(\theta^Tx^{(i)})] + \frac{1}{2}\sum_{j=1}^n \theta_j^2minθCi=1m[y(i)cost1(θTx(i))+(1y(i))cost0(θTx(i))]+21j=1nθj2
    该公式则为svm的优化目标。
    z=θTx(i)z=\theta^Tx^{(i)}z=θTx(i)
    如果y=1,希望:cost1(z)cost_1(z)cost1(z)是当z>=1时,cost1(z)=0cost_1(z)=0cost1(z)=0
    如果y=0,希望:cost0(z)cost_0(z)cost0(z)是当z<=-1时,cost0(z)=0cost_0(z)=0cost0(z)=0
    如果C很大,则希望找到使得y(i)cost1(θTx(i))+(1−y(i))cost0(θTx(i))y^{(i)}cost_1(\theta^Tx^{(i)})+(1-y^{(i)})cost_0(\theta^Tx^{(i)})y(i)cost1(θTx(i))+(1y(i))cost0(θTx(i))整体为零的最优解。即:
    y(i)=1:θTx(i)>=1y^{(i)} = 1:\theta^Tx^{(i)}>=1y(i)=1:θTx(i)>=1
    y(i)=0:θTx(i)<=−1y^{(i)} = 0:\theta ^Tx^{(i)}<=-1y(i)=0:θTx(i)<=1
    则:
    minθC∗0+12∑j=1nθj2min_{\theta} C*0 + \frac{1}{2}\sum_{j=1}^{n}\theta_j^2minθC0+21j=1nθj2
    s.t.z>=1,如果y(i)=1;z<=−1,如果y(i)=0s.t. z>=1, 如果y^{(i)}=1;z<=-1,如果y^{(i)}=0s.t.z>=1,y(i)=1;z<=1,y(i)=0
    ###3.决策边界###
    在这里插入图片描述
参考:南京大学吴老师《模式识别》课程和上海财大的《最优化理论与方法》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值