基于 Keras 搭建 CNN 模型

import numpy as np
import matplotlib.pyplot as plt
import keras
import random, csv
from keras import layers, models
from keras.models import Model
from keras.datasets import mnist
from keras.models import load_model, Sequential
from keras.preprocessing import image
from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils, to_categorical
from tensorflow.examples.tutorials.mnist import input_data
from dnn_utils_v2 import plt_sample
from inputDataProc import intialize_data_TS

def xxCNN(train_x, train_y, train_y_orig, test_x, test_y, test_y_orig, label_interval):
	
	classes = len(label_interval)
	#plt_sample(train_y, test_y, label_interval)
	print(train_x.shape)
	print(test_x.shape)
	print(train_y.shape)
	print(test_y.shape)
	#one-hot编码
	train_y = np_utils.to_categorical(train_y, classes)
	test_y = np_utils.to_categorical(test_y, classes)
	#kernel_regularizer=keras.regularizers.l2(0.0001))
	#model = load_model('D://xx.h5')
	#'''
	model = Sequential()
	model.add(Convolution2D(1, kernel_size=(1, 3), strides=1, padding='valid', input_shape=(1, train_x.shape[2], train_x.shape[3]), data_format = "channels_first", kernel_regularizer=keras.regularizers.l2(0)))
	model.add(Activation('relu'))
	#model.add(Dropout(0.1))
	#model.add(Conv2D(16, kernel_size=(2, 2), strides=2, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)))
	#model.add(MaxPooling2D(pool_size=(2, 2)))
	#model.add(Dropout(0.1))
	#model.add(Conv2D(16, kernel_size=(2, 2), strides=2, activation='relu', kernel_regularizer=keras.regularizers.l2(0.001)))
	#model.add(Dropout(0.1))
	#model.add(Conv2D(16, (2, 1), activation='relu'))
	
	model.add(Flatten())
	model.add(Dense(64, kernel_regularizer=keras.regularizers.l2(0.001)))
	model.add(Activation('relu'))
	model.add(Dropout(0.1))
	model.add(Dense(classes))                    #类别个数
	model.add(Activation('softmax'))

	model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
	
	model.summary()
	model.get_config()
	#reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', patience=1, mode='auto')
	history = model.fit(train_x, train_y, batch_size=256, epochs=50, verbose=1, validation_data=(test_x, test_y))#, callbacks=[reduce_lr])
	score = model.evaluate(test_x, test_y, verbose=1)
	#模型保存JSON文件
	model_json = model.to_json()
	with open("D://xx.json", 'w') as file:
		file.write(model_json)
	#保存模型权重值
	model.save('D://xx.h5')
	#'''
	#'''
	test_xx = test_x[0]
	test_x_temp = test_xx.reshape([10, 37])
	
	#取一个样本写入csv文件,测试c++代码使用
	with open("D://xx.csv", "w", newline='') as csvfile: 
		writer = csv.writer(csvfile)
		#写入多行用writerows
		writer.writerows(test_x_temp)
		csvfile.close()
	
	test_xx = test_xx.reshape([1, 1, 10, 37])
	conv2d_1_model = Model(inputs = model.input, outputs = model.get_layer('conv2d_1').output)
	conv2d_1_res = conv2d_1_model.predict(test_xx)
	dense_1_model = Model(inputs = model.input, outputs = model.get_layer('dense_1').output)
	dense_1_res = dense_1_model.predict(test_xx)
	dense_2_model = Model(inputs = model.input, outputs = model.get_layer('dense_2').output)
	dense_2_res = dense_2_model.predict(test_xx)
	#'''
	result = model.predict(test_xx)
	print(result)
	result = np.argmax(result, axis = 1)
	print(result)
	
	out_res(result, test_y_orig, label_interval)
	print(result)
	print('Test score:', score[0])
	print('Test accuracy:', score[1])

	score = model.evaluate(train_x, train_y, verbose=1)
	result = model.predict(train_x)
	result = np.argmax(result, axis=1)

	out_res(result, train_y_orig, label_interval)
	print(result)
	print('Test score:', score[0])
	print('Test accuracy:', score[1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自由技艺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值