# -*- coding: utf-8 -*-
"""
Created on Tue Oct 30 10:34:40 2018
@author: Grey
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
import numpy as np
mnist = input_data.read_data_sets("./data/")
img = mnist.train.images[50]#第50张图片的像素
def get_inputs(real_size, noise_size):
# 占位,实际图像和随机噪声z
real_img = tf.placeholder(tf.float32, [None, real_size], name="real_img")
noise_img = tf.placeholder(tf.float32, [None, noise_size], name="noise_img")
return real_img, noise_img
# 生成
def get_generator(noise_img, n_units, out_dim, reuse=False, alpha=0.01):
with tf.variable_scope("generator", reuse=reuse):
hidden1 = tf.layers.dense(noise_img, n_units) # 全连接层
hidden1 = tf.maximum(alpha * hidden1, hidden1)
# 防止过拟合,加入dropout
hidden1 = tf.layers.dropout(hidden1, rate=0.2)
logits = tf.layers.dense(hidden1, out_dim)
out
利用GAN生成MNIST
最新推荐文章于 2024-10-15 18:34:14 发布

最低0.47元/天 解锁文章
1383

被折叠的 条评论
为什么被折叠?



