1、ResNet和DenseNet的区别和联系
第一个公式是ResNet的。这里的l表示层,xl表示l层的输出,Hl表示一个非线性变换。所以对于ResNet而言,l层的输出是l-1层的输出加上对l-1层输出的非线性变换。
解决梯度爆炸和网络退化问题。
第二个公式是DenseNet的。[x0,x1,…,xl-1]表示将0到l-1层的输出feature map做concatenation。concatenation是做通道的合并,就像Inception那样。而前面resnet是做值的相加,通道数是不变的。Hl包括BN,ReLU和3*3的卷积。l层的输出是0到l-1层层的输出的concatenation。
DenseNet优势:
(1)解决了深层网络的梯度消失问题
(2)加强了特征的传播
(3)鼓励特征重用
(4)减少了模型参数
densenet比resnet参数少的原因在于每一次卷积输入输出的chanenl个数要比resnet少很多,这样bn层的参数也会少很多,channel数对此的影响很大,全连接层的参数也比resnet少很多;
densenet比resnet慢的原因在于,densenet的featuremap比resnet大很多,导致卷积过程的计算量比resnet大很多,简而言之就是flops要大一些,内存的占用要大一些,而且内存的访问次数要多很多,内存的访问是很慢的,而不是全连接层的原因,因为densenet的全连接参数比resnet要少很多。
(内存占用链接:https://blog.youkuaiyun.com/u011311291/article/details/82969409)
2、为什么UNet在医学图像分割上面效果比较好?