%% 方法一:Euclidean Distance
ED=EuclideanDistance(X,Y);
%
GreenSim团队——专业级算法设计&代写程序
%
欢迎访问GreenSim团队主页→http://blog.sina.com.cn/greensim
%选取40个特征基因
[ED,J]=sort(ED,1,'ascend');%对判决向量进行排序
POS=J(1:40);
disp('方法一:Euclidean Distance
选取的40个特征基因的序号为');
disp(POS');
figure
X1=X(POS,:);
LX1=size(X1,1);
FLAG=zeros(LX1,1);
for i=1:LX1
end
[FLAG,JJ]=sort(FLAG,1,'descend');
pcolor(X1(JJ,:));
title('Euclidean Distance','FontName','Times New Roman','FontSize',10);
%% 方法二:Pearson's Correlation Coefficient
PR=Pearson(X,Y);
%
GreenSim团队——专业级算法设计&代写程序
%
欢迎访问GreenSim团队主页→http://blog.sina.com.cn/greensim
%选取40个特征基因
[PR,J]=sort(PR,1,'ascend');%对判决向量进行排序
POS=J(1:40);
disp('方法二:Pearson Correlation Coefficient
选取的40个特征基因的序号为');
disp(POS');
figure
X1=X(POS,:);
LX1=size(X1,1);
FLAG=zeros(LX1,1);
for i=1:LX1
end
[FLAG,JJ]=sort(FLAG,1,'descend');
pcolor(X1(JJ,:));
title('Pearson Correlation Coefficient','FontName','Times New Roman','FontSize',10);
%% 方法三:Analysis of Variance
FR=VarianceAnalysis(X,Y);
%
GreenSim团队——专业级算法设计&代写程序
%
欢迎访问GreenSim团队主页→http://blog.sina.com.cn/greensim
%选取40个特征基因
[FR,J]=sort(FR,1,'descend');%对判决向量进行排序
POS=J(1:40);
disp('方法三:Analysis of Variance
选取的40个特征基因的序号为');
disp(POS');
figure
X1=X(POS,:);
LX1=size(X1,1);
FLAG=zeros(LX1,1);
for i=1:LX1
end
[FLAG,JJ]=sort(FLAG,1,'descend');
pcolor(X1(JJ,:));
title('Analysis of Variance','FontName','Times New Roman','FontSize',10);
%% 方法四:Signal to Noise Ratio
SNR=SignalNoiseRatio(X,Y);
%
GreenSim团队——专业级算法设计&代写程序
%
欢迎访问GreenSim团队主页→http://blog.sina.com.cn/greensim
%选取40个特征基因
[SNR,J]=sort(SNR,1,'descend');%对判决向量进行排序
POS=J(1:40);
disp('方法四:Signal to Noise Ratio
选取的40个特征基因的序号为');
disp(POS');
figure
X1=X(POS,:);
LX1=size(X1,1);
FLAG=zeros(LX1,1);
for i=1:LX1
end
[FLAG,JJ]=sort(FLAG,1,'descend');
pcolor(X1(JJ,:));
title('Signal to Noise Ratio','FontName','Times New Roman','FontSize',10);
%% 方法五:t-test
TV=Ttest(X,Y);
%
GreenSim团队——专业级算法设计&代写程序
%
欢迎访问GreenSim团队主页→http://blog.sina.com.cn/greensim
%选取40个特征基因
[TV,J]=sort(TV,1,'descend');%对判决向量进行排序
POS=J(1:40);
disp('方法五:t-test
选取的40个特征基因的序号为');
disp(POS');
figure
X1=X(POS,:);
LX1=size(X1,1);
FLAG=zeros(LX1,1);
for i=1:LX1
end
[FLAG,JJ]=sort(FLAG,1,'descend');
pcolor(X1(JJ,:));
title('t-test','FontName','Times New Roman','FontSize',10);
%% 方法六:Correlation-based Selection
CR=Correlation(X,Y);
%
GreenSim团队——专业级算法设计&代写程序
%
欢迎访问GreenSim团队主页→http://blog.sina.com.cn/greensim
%选取40个特征基因
[CR,J]=sort(CR,1,'descend');%对判决向量进行排序
POS=J(1:40);
disp('方法六:Correlation-based Selection
选取的40个特征基因的序号为');
disp(POS');
figure
X1=X(POS,:);
LX1=size(X1,1);
FLAG=zeros(LX1,1);
for i=1:LX1
end
[FLAG,JJ]=sort(FLAG,1,'descend');
pcolor(X1(JJ,:));
title('Correlation-based Selection','FontName','Times New Roman','FontSize',10);
转载自http://blog.sina.com.cn/s/blog_4b425443010190o3.html