4 Values whose Sum is 0
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5题目大意:给出4组数据,在每一组中选一个数,使4个数的和为零,问有多少种选法。
解题思路:分别求出前两组数据与后两组数据的和,然后对它们排序,利用upper_bound与lower_bound函数可以求出和为0的组数。
lower_bound从已排好序的序列a中利用二分搜索找出指向满足ai >= k的ai的最小指针,upper_bound函数返回指向满足ai > k的ai的最小指针,所以长度为n的有序序列a中k的个数可以利用以下方法求出:
upper_bound(a,a + n,k) - lower_bound(a,a + n,k)
代码如下:
#include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn = 4005;
ll a[maxn],b[maxn],c[maxn],d[maxn],ab[maxn * maxn],cd[maxn * maxn];
int main()
{
int i,j,k,l,n,ans;
while(scanf("%d",&n) != EOF){
for(i = 0;i < n;i++){
scanf("%lld %lld %lld %lld",&a[i],&b[i],&c[i],&d[i]);
}
k = 0;
for(i = 0;i < n;i++){
for(j = 0;j < n;j++){
ab[k] = a[i] + b[j];
cd[k] = c[i] + d[j];
k++;
}
}
sort(ab,ab + k);
sort(cd,cd + k);
ans = 0;
for(i = 0;i < k;i++){
ans += upper_bound(ab,ab + k,-cd[i]) - lower_bound(ab,ab + k,-cd[i]);
}
printf("%d\n",ans);
}
return 0;
}