HDOJ 2199 Can you solve this equation?(二分)

本文介绍了一种使用二分法在指定区间内精确求解特定多项式方程的方法,并提供了实现该算法的C++代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Can you solve this equation?



Problem Description
Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.
 

Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
 

Output
For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
 

Sample Input
2 100 -4
 

Sample Output
1.6152 No solution!

题目大意:给出方程y = 8 * x ^ 4 + 7 * x ^ 3 + 2 * x ^ 2 + 3 * x + 6,其中fabs(y) <= 1e10,求x在区间[0,100]内的解,输出4位小数。

解题思路:在区间[0,100]内二分x,将x带入方程,判断结果与y的大小关系,若ans > y,则ub = mid;若ans < y,则lb = mid。由于fabs(y) <= 1e10,所以经过40次二分即可带到精度要求。

代码如下:

#include <cstdio>
#include <cmath>

double y;

double fun(double x)
{
    return 8 * pow(x,4.0) + 7 * pow(x,3.0) + 2 * pow(x,2.0) + 3 * x + 6;
}

int main()
{
    double lb,ub;
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%lf",&y);
        if(fun(0) <= y && y <= fun(100)){
            lb = 0,ub = 100;
            for(int i = 0;i < 40;i++){
                double mid = (ub + lb) / 2.0;
                if(fun(mid) > y)
                    ub = mid ;
                else
                    lb = mid ;
            }
            printf("%.4lf\n",lb);
        }else{
            printf("No solution!\n");
        }

    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值