唯一分解定理

唯一分解定理:

定义:对于任意一个大于1的自然数,必定能以质数的连续乘积的形式来表达。(个人口述,非标准,但足够易懂)

关于唯一分解定理的证明
设当前数字为a.
· 假如a是一个质数:那没什么好说的,a的因数只有1和a,则a就应该用其自身表示。
· 假如a是一个合数:那么根据合数的定义,a一定可以分解为几个数字的乘积的形式。那么递归地考虑,只要是一个合数就可以继续分解,而当分解到了质数就无法继续分解下去,因此所有的质数最终都可以由质数的乘积来表示。

使用时的小技巧:
还是,假设当前要分解的数字为a
当分解a的数字处于sqrt(a)~a时,这种数字只可能在一个位置出现一次。理由也很简单,当sqrt(a)*sqrt(a)时,就已经等于a,所有两个大于sqrt(a)的数字的乘积必定会大于a。
因此,假如要分解一个很大的数字(n),那么筛质数和分解的过程可以只求到sqrt(n)即可,倘若完成之后n仍然大于1,那么n的值就是n大于sqrt(n)的“唯一的”质因数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值