原题链接:http://poj.org/problem?id=3278
算法:bfs+队列
Catch That Cow
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 32679 Accepted: 10060
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
- Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
- Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
做题过程
看了半天大佬的博客,懵懵懂懂的知道了BFS的大致思路
大佬的BFS解释
然后自己根据这道题画了个大致的图,如下图所示:
大致思路
利用队列的先进先出特性,将下一层三种走法的结果入队,然后再取出队首计算三种走法,入队,以此类推,知道找到终点k位置,即为所求。
代码
//Catch That Cow
//抓住那个奶牛!!!
/**
利用BFS+Queue队列
**/
#include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=100001;//边界值
bool vis[maxn];//记录该点是否通过
int step[maxn];//记录到达该点的步数
queue<int> q;
int BFS(int n,int k)
{
int head,next;
q.push(n);
step[n]=0;
vis[n]=true;
while(!q.empty())
{//判断队不为空
head=q.front();//获取队头
q.pop();
for(int i=0;i<3;i++)
{//三种走路方法
if(i==0)next=head-1;
else if(i==1)next=head+1;
else if(i==2)next=head*2;
if(next<0||next>=maxn)continue;
if(!vis[next])//如果该点没有访问过
{
q.push(next);
step[next]=step[head]+1;
vis[next]=true;
}
if(next==k)return step[next];
}
}
}
int main()
{
int n,k;
while(cin>>n>>k)
{
memset(step,0,sizeof(step));
memset(vis,false,sizeof(vis));
while(!q.empty()) q.pop(); //注意调用前要先清空
if(n>=k) printf("%d\n",n-k);
else printf("%d\n",BFS(n,k));
}
return 0;
}