CodeForces 480A. Exams

探讨了如何通过编程解决Codeforces竞赛中考试时间安排问题,重点在于利用排序和比较来计算Valera至少需要到几号才能完成所有考试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:http://codeforces.com/problemset/problem/480/A

 题意:

    又要考试了,有n场考试, Valera 想要早点结束考试,给你两个数a,b,其中a为学校安排考试时间,b为 Valera 可以提前考试的时间,问题来了!

       求 Valera 考完试至少到几号呢(题意竟然重复写了5次,有种想哭的冲动了哭

代码如下:

#include <stdio.h>
#include <algorithm>
using namespace std;
#define N 5005

struct ye 
{
    int a, b;
}s[N];
 
int cmp(ye x, ye
{
    if(x.a==y.a) return x.b < y.b;
    else         return  x.a < y.a;
}
 
int main()
{
    int n,i;
    scanf("%d",&n);
    for(i=0;i<n;i++)
        scanf("%d%d",&s[i].a,&s[i].b);
    sort(s,s+n,cmp);
    int ans=s[0].b;
    for(i=1;i<n;i++)
    {
        if(ans<=s[i].b) ans=s[i].b;
        else            ans=s[i].a;
    }
    printf("%d\n",ans);
    return 0;
} 




### Codeforces 1732A Bestie 题目解析 对于给定的整数数组 \(a\) 和查询次数 \(q\),每次查询给出两个索引 \(l, r\),需要计算子数组 \([l,r]\) 的最大公约数(GCD)。如果 GCD 结果为 1,则返回 "YES";否则返回 "NO"[^4]。 #### 解决方案概述 为了高效解决这个问题,可以预先处理数据以便快速响应多个查询。具体方法如下: - **预处理阶段**:构建辅助结构来存储每一对可能区间的 GCD 值。 - **查询阶段**:利用已有的辅助结构,在常量时间内完成每个查询。 然而,考虑到内存限制以及效率问题,直接保存所有区间的结果并不现实。因此采用更优化的方法——稀疏表(Sparse Table),它允许 O(1) 时间内求任意连续子序列的最大值/最小值/GCD等问题,并且支持静态RMQ(Range Minimum Query)/RANGE_GCD等操作。 #### 实现细节 ##### 构建稀疏表 通过动态规划的方式填充二维表格 `st`,其中 `st[i][j]` 表示从位置 i 开始长度为 \(2^j\) 的子串的最大公约数值。初始化时只需考虑单元素情况即 j=0 的情形,之后逐步扩展至更大的范围直到覆盖整个输入序列。 ```cpp const int MAXN = 2e5 + 5; int st[MAXN][20]; // Sparse table for storing precomputed results. vector<int> nums; void build_sparse_table() { memset(st,-1,sizeof(st)); // Initialize the base case where interval length is one element only. for(int i = 0 ;i < nums.size(); ++i){ st[i][0]=nums[i]; } // Fill up sparse table using previously computed values. for (int j = 1;(1 << j)<=nums.size();++j){ for (int i = 0;i+(1<<j)-1<nums.size();++i){ if(i==0 || st[i][j-1]!=-1 && st[i+(1<<(j-1))][j-1]!=-1) st[i][j]=__gcd(st[i][j-1],st[i+(1<<(j-1))][j-1]); } } } ``` ##### 处理查询请求 当接收到具体的 l 和 r 参数后,可以通过查找对应的 log₂(r-l+1) 来定位合适的跳跃步长 k ,进而组合得到最终答案。 ```cpp string query(int L,int R){ int K=(int)(log2(R-L+1)); return __gcd(st[L][K],st[R-(1<<K)+1][K])==1?"YES":"NO"; } ``` 这种方法能在较短时间内完成大量查询任务的同时保持较低的空间开销,非常适合本题设定下的性能需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值