212. Word Search II

博客围绕在二维棋盘查找字典单词的问题展开。提出使用回溯法和字典树(Trie)解决,阐述了字典树在该问题中的优势。还对代码进行了多轮优化,将运行时间从59ms优化至15ms,并给出了时间复杂度分析。

问题

Given a 2D board and a list of words from the dictionary, find all words in the board.

Each word must be constructed from letters of sequentially adjacent cell, where “adjacent” cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example:

Input: 
board = [
  ['o','a','a','n'],
  ['e','t','a','e'],
  ['i','h','k','r'],
  ['i','f','l','v']
]
words = ["oath","pea","eat","rain"]

Output: ["eat","oath"]

Note:

All inputs are consist of lowercase letters a-z.
The values of words are distinct.

Backtracking + Trie

Intuitively, start from every cell and try to build a word in the dictionary. Backtracking (dfs) is the powerful way to exhaust every possible ways. Apparently, we need to do pruning when current character is not in any word.

How do we instantly know the current character is invalid? HashMap?
How do we instantly know what’s the next valid character? LinkedList?
But the next character can be chosen from a list of characters. “Mutil-LinkedList”?
Combing them, Trie is the natural choice. Notice that:

TrieNode is all we need. search and startsWith are useless.
No need to store character at TrieNode. c.next[i] != null is enough.
Never use c1 + c2 + c3. Use StringBuilder.
No need to use O(n^2) extra space visited[m][n].
No need to use StringBuilder. Storing word itself at leaf node is enough.
No need to use HashSet to de-duplicate. Use “one time search” trie.
For more explanations, check out dietpepsi’s blog.

Code Optimization
UPDATE: Thanks to @dietpepsi we further improved from 17ms to 15ms.

59ms: Use search and startsWith in Trie class like this popular solution.
33ms: Remove Trie class which unnecessarily starts from root in every dfs call.
30ms: Use w.toCharArray() instead of w.charAt(i).
22ms: Use StringBuilder instead of c1 + c2 + c3.
20ms: Remove StringBuilder completely by storing word instead of boolean in TrieNode.
20ms: Remove visited[m][n] completely by modifying board[i][j] = ‘#’ directly.
18ms: check validity, e.g., if(i > 0) dfs(…), before going to the next dfs.
17ms: De-duplicate c - a with one variable i.
15ms: Remove HashSet completely. dietpepsi’s idea is awesome.
The final run time is 15ms. Hope it helps!



public List<String> findWords(char[][] board, String[] words) {
    List<String> res = new ArrayList<>();
    TrieNode root = buildTrie(words);
    for (int i = 0; i < board.length; i++) {
        for (int j = 0; j < board[0].length; j++) {
            dfs (board, i, j, root, res);
        }
    }
    return res;
}

public void dfs(char[][] board, int i, int j, TrieNode p, List<String> res) {
    char c = board[i][j];
    if (c == '#' || p.next[c - 'a'] == null) return;
    p = p.next[c - 'a'];
    if (p.word != null) {   // found one
        res.add(p.word);
        p.word = null;     // de-duplicate
    }

    board[i][j] = '#';
    if (i > 0) dfs(board, i - 1, j ,p, res); 
    if (j > 0) dfs(board, i, j - 1, p, res);
    if (i < board.length - 1) dfs(board, i + 1, j, p, res); 
    if (j < board[0].length - 1) dfs(board, i, j + 1, p, res); 
    board[i][j] = c;
}

public TrieNode buildTrie(String[] words) {
    TrieNode root = new TrieNode();
    for (String w : words) {
        TrieNode p = root;
        for (char c : w.toCharArray()) {
            int i = c - 'a';
            if (p.next[i] == null) p.next[i] = new TrieNode();
            p = p.next[i];
       }
       p.word = w;
    }
    return root;
}

class TrieNode {
    TrieNode[] next = new TrieNode[26];
    String word;
}

The time complexity analysis:Board: n rows and m columns; words: k words with average length l.
Construct k Trie: kO(l)
Traversing every element in the board: O(n
m); DFS (average depth: l) and search Trie : O(l)
Then, Total: O(kl) + O(nm) * O(l)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值