LeetCode 212. Word Search II(单词搜索)

原题网址:https://leetcode.com/problems/word-search-ii/

Given a 2D board and a list of words from the dictionary, find all words in the board.

Each word must be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

For example,
Given words = ["oath","pea","eat","rain"] and board =

[
  ['o','a','a','n'],
  ['e','t','a','e'],
  ['i','h','k','r'],
  ['i','f','l','v']
]
Return  ["eat","oath"] .

Note:
You may assume that all inputs are consist of lowercase letters a-z.

click to show hint.

You would need to optimize your backtracking to pass the larger test. Could you stop backtracking earlier?

If the current candidate does not exist in all words' prefix, you could stop backtracking immediately. What kind of data structure could answer such query efficiently? Does a hash table work? Why or why not? How about a Trie? If you would like to learn how to implement a basic trie, please work on this problem: Implement Trie (Prefix Tree) first.

方法:前缀树+深度优先搜索。

public class Solution {
    private TrieNode root = new TrieNode();
    private int[] ro = {-1, 1, 0, 0};
    private int[] co = {0, 0, -1, 1};
    private void find(char[][] board, boolean[][] visited, int row, int col, TrieNode node, Set<String> founded) {
        visited[row][col] = true;
        TrieNode current = node.nexts[board[row][col]-'a'];
        if (current.word != null) founded.add(current.word);
        for(int i=0; i<4; i++) {
            int nr = row + ro[i];
            int nc = col + co[i];
            if (nr < 0 || nr >= board.length || nc < 0 || nc >= board[nr].length || visited[nr][nc]) continue;
            TrieNode next = current.nexts[board[nr][nc]-'a'];
            if (next != null) find(board, visited, nr, nc, current, founded);
        }
        visited[row][col] = false;
    }
    public List<String> findWords(char[][] board, String[] words) {
        Set<String> founded = new HashSet<>();
        for(int i=0; i<words.length; i++) {
            char[] wa = words[i].toCharArray();
            TrieNode node = root;
            for(int j=0; j<wa.length; j++) node = node.append(wa[j]);
            node.word = words[i];
        }
        boolean[][] visited = new boolean[board.length][board[0].length];
        for(int i=0; i<board.length; i++) {
            for(int j=0; j<board[i].length; j++) {
                if (root.nexts[board[i][j]-'a'] != null) find(board, visited, i, j, root, founded);
            }
        }
        List<String> results = new ArrayList<>();
        results.addAll(founded);
        return results;
    }
}
class TrieNode {
    String word;
    TrieNode[] nexts = new TrieNode[26];
    TrieNode append(char ch) {
        if (nexts[ch-'a'] != null) return nexts[ch-'a'];
        nexts[ch-'a'] = new TrieNode();
        return nexts[ch-'a'];
    }
}

可以通过修改Trie数据的方式防止重复添加单词:

public class Solution {
    private int[] dy = {-1, 1, 0, 0};
    private int[] dx = {0, 0, -1, 1};
    private void find(char[][] board, boolean[][] visit, int y, int x, Trie node, List<String> results) {
        if (y < 0 || y >= board.length || x < 0 || x >= board[y].length) return;
        if (visit[y][x]) return;
        visit[y][x] = true;
        Trie next = node.nexts[board[y][x]-'a'];
        if (next != null) {
            if (next.word != null) {
                results.add(next.word);
                next.word = null;
            }
            for(int i=0; i<4; i++) {
                int ny = y+dy[i];
                int nx = x+dx[i];
                find(board, visit, ny, nx, next, results);
            }
        }
        visit[y][x] = false;
    }
    public List<String> findWords(char[][] board, String[] words) {
        Trie root = new Trie();
        for(String word: words) {
            Trie node = root;
            char[] wa = word.toCharArray();
            for(char c: wa) node = node.append(c);
            node.word = word;
        }
        boolean[][] visit = new boolean[board.length][board[0].length];
        List<String> results = new ArrayList<>();
        for(int i=0; i<board.length; i++) {
            for(int j=0; j<board[i].length; j++) {
                find(board, visit, i, j, root, results);
            }
        }
        return new ArrayList<>(results);
    }
}
class Trie {
    String word;
    Trie[] nexts = new Trie[26];
    Trie append(char ch) {
        if (nexts[ch-'a'] == null) nexts[ch-'a'] = new Trie();
        return nexts[ch-'a'];
    }
}


### LeetCode Hot 100 Problems 列表 LeetCode 的热门题目列表通常由社区投票选出,涵盖了各种难度级别的经典编程挑战。这些题目对于准备技术面试非常有帮助。以下是部分 LeetCode 热门 100 题目列表: #### 数组与字符串 1. **两数之和 (Two Sum)** 2. **三数之和 (3Sum)** 3. **无重复字符的最长子串 (Longest Substring Without Repeating Characters)** 4. **寻找两个正序数组的中位数 (Median of Two Sorted Arrays)** #### 动态规划 5. **爬楼梯 (Climbing Stairs)** 6. **不同的二叉搜索(Unique Binary Search Trees)** 7. **最大子序列和 (Maximum Subarray)** #### 字符串处理 8. **有效的括号 (Valid Parentheses)** 9. **最小覆盖子串 (Minimum Window Substring)** 10. **字母异位词分组 (Group Anagrams)** #### 图论 11. **岛屿数量 (Number of Islands)** 12. **课程表 II (Course Schedule II)** #### 排序与查找 13. **最接近原点的 K 个点 (K Closest Points to Origin)** 14. **接雨水 (Trapping Rain Water)** 15. **最长连续序列 (Longest Consecutive Sequence)[^2]** #### 堆栈与队列 16. **每日温度 (Daily Temperatures)** 17. **滑动窗口最大值 (Sliding Window Maximum)** #### 树结构 18. **验证二叉搜索(Validate Binary Search Tree)** 19. **二叉树的最大路径和 (Binary Tree Maximum Path Sum)** 20. **从前序与中序遍历序列构造二叉树 (Construct Binary Tree from Preorder and Inorder Traversal)** #### 并查集 21. **冗余连接 II (Redundant Connection II)** #### 贪心算法 22. **跳跃游戏 (Jump Game)** 23. **分割等和子集 (Partition Equal Subset Sum)** #### 双指针技巧 24. **环形链表 II (Linked List Cycle II)[^1]** 25. **相交链表 (Intersection of Two Linked Lists)** #### 其他重要题目 26. **LRU缓存机制 (LRU Cache)** 27. **打家劫舍系列 (House Robber I & II)** 28. **编辑距离 (Edit Distance)** 29. **单词拆分 (Word Break)** 此列表并非官方发布版本而是基于社区反馈整理而成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值