学习笔记|Pytorch使用教程30
本学习笔记主要摘自“深度之眼”,做一个总结,方便查阅。
使用Pytorch版本为1.2
- PyTorch常见报错
- PyTorch框架训练营课程总结
一.PyTorch常见报错
共同贡献PyTorch常见错误与坑汇总文档:
《PyTorch常 见报错/坑汇总》
1.报错: ValueError: num_samples should be a positive integer value, but got num_samples=0
可能的原因:
- 传入的Dataset中的len(self.data_ info)= =0,即传入该dataloader的dataset里没有数据
解决方法:
- 检查dataset中的路径
- 检查Dataset的len__.()函数为何输出为零
测试代码:
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
from torch.utils.data import DataLoader
from tools.my_dataset import RMBDataset
from torch.utils.data import Dataset
from model.lenet import LeNet
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ========================== 1 num_samples=0
# flag = 0
flag = 1
if flag:
train_dir = os.path.join("..", "data", "rmb_split", "train")
# train_dir = os.path.join("..", "..", "data", "rmb_split", "train")
train_data = RMBDataset(data_dir=train_dir)
# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=16, shuffle=True)
输出:
Traceback (most recent call last):
File "common_errors.py", line 32, in <module>
train_loader = DataLoader(dataset=train_data, batch_size=16, shuffle=True)
File "/home/omnisky/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 213, in __init__
sampler = RandomSampler(dataset)
File "/home/omnisky/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/utils/data/sampler.py", line 94, in __init__
"value, but got num_samples={}".format(self.num_samples))
ValueError: num_samples should be a positive integer value, but got num_samples=0
这是路径错误,设置train_dir = os.path.join("..", "..", "data", "rmb_split", "train")
2.报错: TypeError: pic should be PIL Image or ndarray. Got <class
'torch.Tensor >
可能的原因:
- 当前操作需要PIL Image或ndarray数据类型,但传入了Tensor
解决方法:
- 检查transform中是否存在两次ToTensor()方法
- 检查transform中每一一个操作的数据类型变化
测试代码:
# ========================== 2
# TypeError: pic should be PIL Image or ndarray. Got <class 'torch.Tensor'>
# flag = 0
flag = 1
if flag:
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.FiveCrop(200),
transforms.Lambda(lambda crops: torch.stack([(transforms.ToTensor()(crop)) for crop in crops])),
transforms.ToTensor(),
# transforms.ToTensor(),
])
train_dir = os.path.join("..", "..", "data", "rmb_split", "train")
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
train_loader = DataLoader(dataset=train_data, batch_size=16, shuffle=True)
data, label = next(iter(train_loader))
输出:
Traceback (most recent call last