day07【线程池、Lambda表达式】

第一章 等待唤醒机制

1.1 线程间通信

概念:多个线程在处理同一个资源,但是处理的动作(线程的任务)却不相同。 

为什么要处理线程间通信:

多个线程并发执行时, 在默认情况下CPU是随机切换线程的,当我们需要多个线程来共同完成一件任务,并且我们希望他们有规律的执行, 那么多线程之间需要一些协调通信,以此来帮我们达到多线程共同操作一份数据。

如何保证线程间通信有效利用资源:

多个线程在处理同一个资源,并且任务不同时,需要线程通信来帮助解决线程之间对同一个变量的使用或操作。 就是多个线程在操作同一份数据时, 避免对同一共享变量的争夺。需要通过一定的手段使各个线程能有效的利用资源。这种手段即—— 等待唤醒机制。

1.2 等待唤醒机制

什么是等待唤醒机制

这是多个线程间的一种协作机制。谈到线程我们经常想到的是线程间的竞争(race),比如去争夺锁,但这并不是故事的全部,线程间也会有协作机制。就好比在公司里你和你的同事们,存在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。

就是在一个线程进行了规定操作后,就进入等待状态(wait()), 等待其他线程执行完他们的指定代码过后 再将其唤醒(notify());在有多个线程进行等待时, 如果需要,可以使用 notifyAll()来唤醒所有的等待线程。

wait/notify 就是线程间的一种协作机制。

等待唤醒中的方法

等待唤醒机制就是用于解决线程间通信的问题的,使用到的3个方法的含义如下:

  1. wait:线程不再活动,不再参与调度,进入 wait set 中,因此不会浪费 CPU 资源,也不会去竞争锁了,这时的线程状态即是 WAITING。它还要等着别的线程执行一个特别的动作,也即是“通知(notify)”在这个对象上等待的线程从wait set 中释放出来,重新进入到调度队列(ready queue)中
  2. notify:则选取所通知对象的 wait set 中的一个线程释放;例如,餐馆有空位置后,等候就餐最久的顾客最先入座。
  3. notifyAll:则释放所通知对象的 wait set 上的全部线程。

注意:

哪怕只通知了一个等待的线程,被通知线程也不能立即恢复执行,因为它当初中断的地方是在同步块内,而此刻它已经不持有锁,所以她需要再次尝试去获取锁(很可能面临其它线程的竞争),成功后才能在当初调用 wait 方法之后的地方恢复执行。

总结如下:

  • 如果能获取锁,线程就从 WAITING 状态变成 RUNNABLE 状态;
  • 否则,从 wait set 出来,又进入 entry set,线程就从 WAITING 状态又变成 BLOCKED 状态。

调用wait和notify方法需要注意的细节

  1. wait方法与notify方法必须要由同一个锁对象调用。因为:对应的锁对象可以通过notify唤醒使用同一个锁对象调用的wait方法后的线程。
  2. wait方法与notify方法是属于Object类的方法的。因为:锁对象可以是任意对象,而任意对象的所属类都是继承了Object类的。
  3. wait方法与notify方法必须要在同步代码块或者是同步函数中使用。因为:必须要通过锁对象调用这2个方法。

1.3 生产者与消费者问题

等待唤醒机制其实就是经典的“生产者与消费者”的问题。

就拿生产包子消费包子来说等待唤醒机制如何有效利用资源:

包子铺线程生产包子,吃货线程消费包子。当包子没有时(包子状态为false),吃货线程等待,包子铺线程生产包子(即包子状态为true),并通知吃货线程(解除吃货的等待状态),因为已经有包子了,那么包子铺线程进入等待状态。接下来,吃货线程能否进一步执行则取决于锁的获取情况。如果吃货获取到锁,那么就执行吃包子动作,包子吃完(包子状态为false),并通知包子铺线程(解除包子铺的等待状态),吃货线程进入等待。包子铺线程能否进一步执行则取决于锁的获取情况。

 

/*
    资源类:包子类
    设置包子的属性
        皮
        陷
        包子的状态: 有 true,没有 false
 */
public class BaoZi {
    //皮
    String pi;
    //陷
    String xian;
    //包子的状态: 有 true,没有 false,设置初始值为false没有包子
    boolean flag = false;
}
/*
    生产者(包子铺)类:是一个线程类,可以继承Thread
    设置线程任务(run):生产包子
    对包子的状态进行判断
    true:有包子
        包子铺调用wait方法进入等待状态
    false:没有包子
        包子铺生产包子
        增加一些趣味性:交替生产两种包子
            有两种状态(i%2==0)
        包子铺生产好了包子
        修改包子的状态为true有
        唤醒吃货线程,让吃货线程吃包子

    注意:
        包子铺线程和包子线程关系-->通信(互斥)
        必须同时同步技术保证两个线程只能有一个在执行
        锁对象必须保证唯一,可以使用包子对象作为锁对象
        包子铺类和吃货的类就需要把包子对象作为参数传递进来
            1.需要在成员位置创建一个包子变量
            2.使用带参数构造方法,为这个包子变量赋值
 */
public class BaoZiPu extends Thread{
    //1.需要在成员位置创建一个包子变量
    private BaoZi bz;

    //2.使用带参数构造方法,为这个包子变量赋值
    public BaoZiPu(BaoZi bz) {
        this.bz = bz;
    }

    //设置线程任务(run):生产包子
    @Override
    public void run() {
        //定义一个变量
        int count = 0;
        //让包子铺一直生产包子
        while(true){
            //必须同时同步技术保证两个线程只能有一个在执行
            synchronized (bz){
                //对包子的状态进行判断
                if(bz.flag==true){
                    //包子铺调用wait方法进入等待状态
                    try {
                        bz.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                //被唤醒之后执行,包子铺生产包子
                //增加一些趣味性:交替生产两种包子
                if(count%2==0){
                    //生产 薄皮三鲜馅包子
                    bz.pi = "薄皮";
                    bz.xian = "三鲜馅";
                }else{
                    //生产 冰皮 牛肉大葱陷
                    bz.pi = "冰皮";
                    bz.xian = "牛肉大葱陷";

                }
                count++;
                System.out.println("包子铺正在生产:"+bz.pi+bz.xian+"包子");
                //生产包子需要3秒钟
                try {
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                //包子铺生产好了包子
                //修改包子的状态为true有
                bz.flag = true;
                //唤醒吃货线程,让吃货线程吃包子
                bz.notify();
                System.out.println("包子铺已经生产好了:"+bz.pi+bz.xian+"包子,吃货可以开始吃了");
            }
        }
    }
}
/*
    消费者(吃货)类:是一个线程类,可以继承Thread
    设置线程任务(run):吃包子
    对包子的状态进行判断
    false:没有包子
        吃货调用wait方法进入等待状态
    true:有包子
        吃货吃包子
        吃货吃完包子
        修改包子的状态为false没有
        吃货唤醒包子铺线程,生产包子
 */
public class ChiHuo extends Thread{
    //1.需要在成员位置创建一个包子变量
    private BaoZi bz;

    //2.使用带参数构造方法,为这个包子变量赋值
    public ChiHuo(BaoZi bz) {
        this.bz = bz;
    }
    //设置线程任务(run):吃包子
    @Override
    public void run() {
        //使用死循环,让吃货一直吃包子
        while (true){
            //必须同时同步技术保证两个线程只能有一个在执行
            synchronized (bz){
                //对包子的状态进行判断
                if(bz.flag==false){
                    //吃货调用wait方法进入等待状态
                    try {
                        bz.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }

                //被唤醒之后执行的代码,吃包子
                System.out.println("吃货正在吃:"+bz.pi+bz.xian+"的包子");
                //吃货吃完包子
                //修改包子的状态为false没有
                bz.flag = false;
                //吃货唤醒包子铺线程,生产包子
                bz.notify();
                System.out.println("吃货已经把:"+bz.pi+bz.xian+"的包子吃完了,包子铺开始生产包子");
                System.out.println("----------------------------------------------------");
            }
        }
    }
}
/*
    测试类:
    包含main方法,程序执行的入口,启动程序
    创建包子对象;
    创建包子铺线程,开启,生产包子;
    创建吃货线程,开启,吃包子;
 */
public class Demo {
    public static void main(String[] args) {
        //创建包子对象;
        BaoZi bz =new BaoZi();
        //创建包子铺线程,开启,生产包子;
        new BaoZiPu(bz).start();
        //创建吃货线程,开启,吃包子;
        new ChiHuo(bz).start();
    }
}

 

第二章 线程池

2.1 线程池思想概述

我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:

如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。

那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?

在Java中可以通过线程池来达到这样的效果。今天我们就来详细讲解一下Java的线程池。

2.2 线程池概念

  • 线程池:其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。

由于线程池中有很多操作都是与优化资源相关的,我们在这里就不多赘述。我们通过一张图来了解线程池的工作原理:

合理利用线程池能够带来三个好处:

  1. 降低资源消耗。减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
  2. 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
  3. 提高线程的可管理性。可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

2.3 线程池的使用

Java里面线程池的顶级接口是java.util.concurrent.Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是java.util.concurrent.ExecutorService

对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在java.util.concurrent.Executors线程工厂类里面提供了一些静态工厂,生成一些常用的线程池。官方建议使用Executors工程类来创建线程池对象。

Executors类中有个创建线程池的方法如下:

public static ExecutorService newFixedThreadPool(int nThreads):返回线程池对象。(创建的是有界线程池,也就是池中的线程个数可以指定最大数量)

获取到了一个线程池ExecutorService 对象,那么怎么使用呢,在这里定义了一个使用线程池对象的方法如下:

public Future<?> submit(Runnable task):获取线程池中的某一个线程对象,并执行

Future接口:用来记录线程任务执行完毕后产生的结果。线程池创建与使用。

使用线程池中线程对象的步骤:

  1. 创建线程池对象。
  2. 创建Runnable接口子类对象。(task)
  3. 提交Runnable接口子类对象。(take task)
  4. 关闭线程池(一般不做)。
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/*
    线程池:JDK1.5之后提供的
    java.util.concurrent.Executors:线程池的工厂类,用来生成线程池
    Executors类中的静态方法:
        static ExecutorService newFixedThreadPool(int nThreads) 创建一个可重用固定线程数的线程池
        参数:
            int nThreads:创建线程池中包含的线程数量
        返回值:
            ExecutorService接口,返回的是ExecutorService接口的实现类对象,我们可以使用ExecutorService接口接收(面向接口编程)
    java.util.concurrent.ExecutorService:线程池接口
        用来从线程池中获取线程,调用start方法,执行线程任务
            submit(Runnable task) 提交一个 Runnable 任务用于执行
        关闭/销毁线程池的方法
            void shutdown()
    线程池的使用步骤:
        1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
        2.创建一个类,实现Runnable接口,重写run方法,设置线程任务
        3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
        4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)
 */
public class Demo01ThreadPool {
    public static void main(String[] args) {
        //1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
        ExecutorService es = Executors.newFixedThreadPool(2);
        //3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
        es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
        //线程池会一直开启,使用完了线程,会自动把线程归还给线程池,线程可以继续使用
        es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
        es.submit(new RunnableImpl());//pool-1-thread-2创建了一个新的线程执行
        //4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)
        es.shutdown();
        es.submit(new RunnableImpl());//抛异常,线程池都没有了,就不能获取线程了
    }
}
public class RunnableImpl implements Runnable {
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName()+"创建了一个新的线程执行");
    }
}

 

第三章 Lambda表达式

3.1 函数式编程思想概述

面向对象的思想:

​  做一件事情,找一个能解决这个事情的对象,调用对象的方法,完成事情。

函数式编程思想:

​  只要能获取到结果,谁去做的,怎么做的都不重要,重视的是结果,不重视过程。

3.2 冗余的Runnable代码

传统写法

当需要启动一个线程去完成任务时,通常会通过java.lang.Runnable接口来定义任务内容,并使用java.lang.Thread类来启动该线程。代码如下:

public class RunnableImpl implements Runnable{
    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName()+"新的线程创建了!");
    }
}

public class Demo01Runnable {
    public static void main(String[] args) {
        //创建Runnable类接口的实现类对象
        RunnableImpl run = new RunnableImpl();
        //创建Thread类对象,构造方法中传递Runnable接口的实现类
        Thread t = new Thread(run);
        //调用start方法开启新线程,执行run方法
        t.start();

        //简化代码,使用匿名内部类,实现多线程程序
        new Thread(new Runnable(){
            @Override
            public void run() {
                System.out.println(Thread.currentThread().getName()+"新的线程创建了!");
            }
        }).start();
    }

}
public class Demo01Runnable {
    public static void main(String[] args) {
        // 匿名内部类
        Runnable task = new Runnable() {
            @Override
            public void run() { // 覆盖重写抽象方法
                System.out.println("多线程任务执行!");
            }
        };
        new Thread(task).start(); // 启动线程
    }
}

本着“一切皆对象”的思想,这种做法是无可厚非的:首先创建一个Runnable接口的匿名内部类对象来指定任务内容,再将其交给一个线程来启动。

代码分析

对于Runnable的匿名内部类用法,可以分析出几点内容:

  • Thread类需要Runnable接口作为参数,其中的抽象run方法是用来指定线程任务内容的核心;

  • 为了指定run的方法体,不得不需要Runnable接口的实现类;

  • 为了省去定义一个RunnableImpl实现类的麻烦,不得不使用匿名内部类;

  • 必须覆盖重写抽象run方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;

  • 而实际上,似乎只有方法体才是关键所在

3.3 编程思想转换

做什么,而不是怎么做

我们真的希望创建一个匿名内部类对象吗?不。我们只是为了做这件事情而不得不创建一个对象。我们真正希望做的事情是:将run方法体内的代码传递给Thread类知晓。

2014年3月Oracle所发布的Java 8(JDK 1.8)中,加入了Lambda表达式的重量级新特性,为我们打开了新世界的大门。

3.4 体验Lambda的更优写法

//使用Lambda表达式,实现多线程
new Thread(()->{
    System.out.println(Thread.currentThread().getName()+" 新线程创建了");
}
).start();

3.5 回顾匿名内部类

Lambda是怎样击败面向对象的?在上例中,核心代码其实只是如下所示的内容:

() -> System.out.println("多线程任务执行!")

为了理解Lambda的语义,我们需要从传统的代码起步。 

使用实现类 

要启动一个线程,需要创建一个Thread类的对象并调用start方法。而为了指定线程执行的内容,需要调用Thread类的构造方法: 
public Thread(Runnable target) 
为了获取Runnable接口的实现对象,可以为该接口定义一个实现类RunnableImpl:

public class RunnableImpl implements Runnable {
	@Override
	public void run() {
		System.out.println("多线程任务执行!");
	}
}

然后创建该实现类的对象作为Thread类的构造参数:

public class Demo03ThreadInitParam {
	public static void main(String[] args) {
		Runnable task = new RunnableImpl();
		new Thread(task).start();
	}
}

使用匿名内部类

这个RunnableImpl类只是为了实现Runnable接口而存在的,而且仅被使用了唯一一次,所以使用匿名内部类的语法即可省去该类的单独定义,即匿名内部类:

public class Demo04ThreadNameless {
	public static void main(String[] args) {
		new Thread(new Runnable() {
			@Override
			public void run() {
				System.out.println("多线程任务执行!");
			}
		}).start();
	}
}

 匿名内部类的好处与弊端 

一方面,匿名内部类可以帮我们省去实现类的定义;另一方面,匿名内部类的语法——确实太复杂了! 

语义分析 

仔细分析该代码中的语义,Runnable接口只有一个run方法的定义: 
public abstract void run(); 
即制定了一种做事情的方案(其实就是一个函数): 

  • 无参数:不需要任何条件即可执行该方案。
  • 无返回值:该方案不产生任何结果。
  • 代码块(方法体):该方案的具体执行步骤。

同样的语义体现在Lambda语法中,要更加简单:

() -> System.out.println("多线程任务执行!")
  • 前面的一对小括号即run方法的参数(无),代表不需要任何条件;
  • 中间的一个箭头代表将前面的参数传递给后面的代码;
  • 后面的输出语句即业务逻辑代码。

3.6 Lambda标准格式

Lambda省去面向对象的条条框框,格式由3个部分组成:

  • 一些参数
  • 一个箭头
  • 一段代码

Lambda表达式的标准格式为:

(参数类型 参数名称) -> { 代码语句 }
/*
    Lambda表达式的标准格式:
        由三部分组成:
            a.一些参数
            b.一个箭头
            c.一段代码
        格式:
            (参数列表) -> {一些重写方法的代码};
        解释说明格式:
            ():接口中抽象方法的参数列表,没有参数,就空着;有参数就写出参数,多个参数使用逗号分隔
            ->:传递的意思,把参数传递给方法体{}
            {}:重写接口的抽象方法的方法体
 */
public class Demo02Lambda {
    public static void main(String[] args) {
        //使用匿名内部类的方式,实现多线程
        new Thread(new Runnable(){
            @Override
            public void run() {
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        }).start();

        //使用Lambda表达式,实现多线程
        new Thread(()->{
            System.out.println(Thread.currentThread().getName()+" 新线程创建了");
        }
        ).start();

        //优化省略Lambda
        new Thread(()->System.out.println(Thread.currentThread().getName()+" 新线程创建了")).start();
    }
}

3.7 练习:使用Lambda标准格式(无参无返回)

题目

给定一个厨子Cook接口,内含唯一的抽象方法makeFood,且无参数、无返回值。如下:

public interface Cook {
    void makeFood();
}

在下面的代码中,请使用Lambda的标准格式调用invokeCook方法,打印输出“吃饭啦!”字样:

public class Demo05InvokeCook {
    public static void main(String[] args) {
        // TODO 请在此使用Lambda【标准格式】调用invokeCook方法
    }

    private static void invokeCook(Cook cook) {
        cook.makeFood();
    }
}

解答

/*
给定一个厨子Cook接口,内含唯一的抽象方法makeFood
 */
public interface Cook {
    //定义无参数无返回值的方法makeFood
    public abstract void makeFood();

}




/*
需求:
    给定一个厨子cook接口,内含唯一的抽象方法 makeFood,且无参数、无返回值。
    使用 Lambda的标准格式调用 invokeCook方法,打印输出"吃饭啦!"字样
 */
public class Demo01Cook {
    public static void main(String[] args) {
        //调用invokeCook方法,参数是Cook接口,传递Cook接口的匿名内部类对象
        invokeCook(new Cook() {
            @Override
            public void makeFood() {
                System.out.println("吃放了");
            }
        });
        //使用Lambda表达式,简化匿名内部类的书写
        invokeCook(()->{
            System.out.println("吃放了");
        });

    }
    //定义一个方法,参数传递Cook接口,方法内部调用Cook接口中的方法makeFood
    public static void invokeCook(Cook cook){
        cook.makeFood();
    }
}

备注:小括号代表Cook接口makeFood抽象方法的参数为空,大括号代表makeFood的方法体。

3.8 Lambda的参数和返回值

需求: 使用数组存储多个Person对象 对数组中的Person对象使用Arrays的sort方法通过年龄进行升序排序

下面举例演示java.util.Comparator<T>接口的使用场景代码,其中的抽象方法定义为: 
public abstract int compare(T o1, T o2); 
当需要对一个对象数组进行排序时,Arrays.sort方法需要一个Comparator接口实例来指定排序的规则。假设有一个Person类,含有String name和int age两个成员变量:
 

public class Person {
    private String name;
    private int age;

    public Person() {
    }

    public Person(String name, int age) {
        this.name = name;
        this.age = age;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }

    @Override
    public String toString() {
        return "Person{" +
                "name='" + name + '\'' +
                ", age=" + age +
                '}';
    }
}
import java.util.Arrays;

/*
 Lambda表达式有参数和返回值的练习
 需求:
     使用数组存储多个Person对象
     对数组中的Person对象使用Arrays的sort方法通过年龄进行升序排序
 */
public class Demo01Arrays {
    public static void main(String[] args) {
        Person[] arr = {
                new Person("佩奇",18),
                new Person("乔治",17),
                new Person("苏西",13)
        };

        //对数组中的Person对象使用Arrays的sort方法通过年龄进行升序排序
        /*Arrays.sort(arr, new Comparator<Person>() {
            @Override
            public int compare(Person o1, Person o2) {
                return o1.getAge()-o2.getAge();
            }
        });*/

        //使用Lambda表达式简化匿名内部类
        Arrays.sort(arr,(Person o1, Person o2)->{
            return o1.getAge()-o2.getAge();
        });

        //遍历数组
        for (Person p :arr){
            System.out.println(p);
        }
    }

}

 3.9 练习:使用Lambda标准格式(有参有返回)

题目

给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值:

/*
    给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值
 */
public interface Calculator {
    //定义一个计算两个int整数和的方法并返回结果
    public abstract int calc(int a,int b);
}


/*
    Lambda表达式有参数有返回值的练习
    需求:
        给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值
        使用Lambda的标准格式调用invokeCalc方法,完成120和130的相加计算
 */
public class Demo01Calculator {
    public static void main(String[] args) {
        //调用invokeCalc方法,方法的参数是一个接口,可以使用匿名内部类
        invokeCalc(10, 20, new Calculator() {
            @Override
            public int calc(int a, int b) {
                return a+b;
            }
        });

        //使用Lambda表达式简化匿名内部类的书写
        invokeCalc(120,130,(int a,int b)->{
            return a + b;
        });

        //优化省略Lambda
        invokeCalc(120,130,(a,b)-> a + b);
    }

    /*
        定义一个方法
        参数传递两个int类型的整数
        参数传递Calculator接口
        方法内部调用Calculator中的方法calc计算两个整数的和
     */
    public static void invokeCalc(int a,int b,Calculator c){
        int sum = c.calc(a,b);
        System.out.println(sum);
    }
}

3.10 Lambda省略格式

省略规则

在Lambda标准格式的基础上,使用省略写法的规则为:

  1. 小括号内参数的类型可以省略;

  2. 如果小括号内有且仅有一个参,则小括号可以省略;

  3. 如果大括号内有且仅有一个语句,则无论是否有返回值,都可以省略大括号、return关键字及语句分号。

3.12 Lambda的使用前提

Lambda的语法非常简洁,完全没有面向对象复杂的束缚。但是使用时有几个问题需要特别注意:

  1. 使用Lambda必须具有接口,且要求接口中有且仅有一个抽象方法
    无论是JDK内置的RunnableComparator接口还是自定义的接口,只有当接口中的抽象方法存在且唯一时,才可以使用Lambda。
  2. 使用Lambda必须具有上下文推断
    也就是方法的参数或局部变量类型必须为Lambda对应的接口类型,才能使用Lambda作为该接口的实例。

备注:有且仅有一个抽象方法的接口,称为“函数式接口

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小夏天禧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值