hdu 3341Lost's revenge(ac自动机+dp)

通过构建AC自动机并采用DP算法优化匹配过程,解决基因串中模式串的最大匹配数问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lost's revenge

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3165    Accepted Submission(s): 838


Problem Description
Lost and AekdyCoin are friends. They always play "number game"(A boring game based on number theory) together. We all know that AekdyCoin is the man called "nuclear weapon of FZU,descendant of Jingrun", because of his talent in the field of number theory. So Lost had never won the game. He was so ashamed and angry, but he didn't know how to improve his level of number theory.

One noon, when Lost was lying on the bed, the Spring Brother poster on the wall(Lost is a believer of Spring Brother) said hello to him! Spring Brother said, "I'm Spring Brother, and I saw AekdyCoin shames you again and again. I can't bear my believers were being bullied. Now, I give you a chance to rearrange your gene sequences to defeat AekdyCoin!".

It's soooo crazy and unbelievable to rearrange the gene sequences, but Lost has no choice. He knows some genes called "number theory gene" will affect one "level of number theory". And two of the same kind of gene in different position in the gene sequences will affect two "level of number theory", even though they overlap each other. There is nothing but revenge in his mind. So he needs you help to calculate the most "level of number theory" after rearrangement.
 

Input
There are less than 30 testcases.
For each testcase, first line is number of "number theory gene" N(1<=N<=50). N=0 denotes the end of the input file.
Next N lines means the "number theory gene", and the length of every "number theory gene" is no more than 10.
The last line is Lost's gene sequences, its length is also less or equal 40.
All genes and gene sequences are only contains capital letter ACGT.
 

Output
For each testcase, output the case number(start with 1) and the most "level of number theory" with format like the sample output.
 

Sample Input
3 AC CG GT CGAT 1 AA AAA 0
 

Sample Output
Case 1: 3 Case 2: 2
 

Author
Qinz@XDU
题目大意:给定一个基因串,又给出一些模式串,要将原串在不增删基因的情况下,如何改造才能得到最多的匹配数
题目分析:先利用模式串构造ac自动机,然后再自动机上dp,首先想到记录状态,也就是当前各个字母分别使用了的个数,还得开一维表示自动机的状态,一定会超内存,那么我们可以利用hash进行离散化后进行状态压缩,然后dp即可,转移比较简单,就是类似于树形dp地在字典树上转移,处理上要先将当前点记录下fail指针所指节点的匹配数,否则可能会超时.......
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#define N 57
#define kind 4

using namespace std;

char st[N];
int n;
int Next[507][kind] , cnt[507] , fail[507] , pos;
int Hash[42][42][42][42];
int dp[11*11*11*11][507];

int index ( char ch )
{
    if ( ch == 'A' ) return 0;
    if ( ch == 'C' ) return 1;
    if ( ch == 'G' ) return 2;
    if ( ch == 'T' ) return 3;
}

int newNode ( )
{
    for ( int i = 0 ; i < kind ; i++ )
        Next[pos][i] = 0;
    fail[pos] = cnt[pos] = 0;
    return pos++;
}

void insert ( char *s )
{
    int i , p = 0;
    for ( i = 0 ; s[i] ; i++ )
    {
        int k = index ( s[i] ) , &x = Next[p][k];
        p = x?x:x = newNode ( );
    }
    cnt[p]++;
}

void build ( )
{
    int i;
    queue<int> q;
    q.push ( 0 );
    while ( !q.empty() )
    {
        int u = q.front();
        cnt[u] += cnt[fail[u]];
        q.pop ( );
        for ( int i = 0 ; i < kind ; i++ )
        {
            int v = Next[u][i];
            if ( v == 0 ) Next[u][i] = Next[fail[u]][i];
            else q.push ( v );
            if ( u && v )
                fail[v] = Next[fail[u]][i];
        }
    }
}

int sum[kind];

void compress ( char *s )
{
    int i = 0 ;
    int num = 0;
    memset ( sum , 0 , sizeof ( sum ) );
    memset ( Hash  , 0 , sizeof ( Hash ) );
    while ( s[i] ) sum[index(s[i++])]++;
    for ( int i = 0 ; i <= sum[0] ; i++ )
        for ( int j = 0 ; j <= sum[1] ; j++ )
            for ( int k = 0 ; k <= sum[2] ; k++ )
               for ( int t = 0 ; t <= sum[3] ; t++ )
                  Hash[i][j][k][t] = num++;
}

int ans;

void solve ( )
{
    memset ( dp , -1 , sizeof ( dp ) );
    dp[0][0] = 0;
    for ( int i = 0 ; i <= sum[0] ; i++ )
        for ( int j = 0 ; j <= sum[1] ; j++ )
            for ( int k = 0 ; k <= sum[2] ; k++ )
                for ( int t = 0 ; t <= sum[3] ;t++ )
                {
                    if ( i + j + k + t == 0 ) continue;
                    int x1 = Hash[i][j][k][t];
                    for ( int l = 0 ; l < pos ; l++ )
                        for ( int q = 0 ; q < kind ; q++ )
                        {
                            int x2;
                            if ( q == 0 && i - 1 >= 0 )
                                x2 = Hash[i-1][j][k][t];
                            else if ( q == 1 && j - 1 >= 0 )
                                x2 = Hash[i][j-1][k][t];
                            else if ( q == 2 && k - 1 >= 0 )
                                x2 = Hash[i][j][k-1][t];
                            else if ( q == 3 && t - 1 >= 0 )
                                x2 = Hash[i][j][k][t-1];
                            else continue;
                            int p = Next[l][q];
                            if ( dp[x2][l] == -1 ) continue;
                            dp[x1][p] = max ( dp[x1][p] , dp[x2][l] + cnt[p] );
                            ans = max ( ans , dp[x1][p] );
                        }
                }
}

int main ( )
{
    int c = 1;
    while ( ~scanf ( "%d" , &n ) , n )
    {
        ans = 0;
        pos = 0, newNode();
        for ( int i = 1 ; i <= n ; i++ )
        {
            scanf ( "%s" , st );
            insert ( st );
        }
        build ( );
        scanf ( "%s" , st );
        compress ( st  );
        solve ( );
        printf ( "Case %d: %d\n" , c++ , ans );
    }
}


内容概要:本文档详细介绍了基于Google Earth Engine (GEE) 构建的阿比让绿地分析仪表盘的设计与实现。首先,定义了研究区域的几何图形并将其可视化。接着,通过云掩膜函数和裁剪操作预处理Sentinel-2遥感影像,筛选出高质量的数据用于后续分析。然后,计算中值图像并提取NDVI(归一化差异植被指数),进而识别绿地及其面积。此外,还实现了多个高级分析功能,如多年变化趋势分析、人口-绿地交叉分析、城市热岛效应分析、生物多样性评估、交通可达性分析、城市扩张分析以及自动生成优化建议等。最后,提供了数据导出、移动端适配和报告生成功能,确保系统的实用性和便捷性。 适合人群:具备一定地理信息系统(GIS)和遥感基础知识的专业人士,如城市规划师、环境科学家、生态学家等。 使用场景及目标:①评估城市绿地分布及其变化趋势;②分析绿地与人口的关系,为城市规划提供依据;③研究城市热岛效应及生物多样性,支持环境保护决策;④评估交通可达性,优化城市交通网络;⑤监测城市扩张情况,辅助土地利用管理。 其他说明:该系统不仅提供了丰富的可视化工具,还集成了多种空间分析方法,能够帮助用户深入理解城市绿地的空间特征及其对环境和社会的影响。同时,系统支持移动端适配,方便随时随地进行分析。用户可以根据实际需求选择不同的分析模块,生成定制化的报告,为城市管理提供科学依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值