- 我们假定XXX为数据集,其中每一行x(i)x^{(i)}x(i)为一个样本,列数代表其特征数量;
- YYY为其真实值,每行y(i)y^{(i)}y(i)与每个输入样本对应;
- Θ\ThetaΘ为每个特征的权重;
X=[x0(0)x1(0)⋯xn(0)x0(1)x1(1)⋯xn(1)⋮⋮⋱⋮x0(m)x0(m)⋯x0(m)]=[x(0)x(1)⋮x(m)] X = \left[ \begin{matrix} x_0^{(0)} & x_1^{(0)} & \cdots & x_n^{(0)} \\ x_0^{(1)} & x_1^{(1)} & \cdots & x_n^{(1)} \\ \vdots & \vdots & \ddots & \vdots\\ x_0^{(m)} & x_0^{(m)} & \cdots & x_0^{(m)} \end{matrix} \right] = \left[ \begin{matrix} x^{(0)} \\ x^{(1)} \\ \vdots \\ x^{(m)} \end{matrix} \right] X=⎣⎢⎢⎢⎢⎡x0(0)x0(1)⋮x0(m)x1(0)x1(1)⋮x0(m)⋯⋯⋱⋯xn(0)xn(1)⋮x0(m)⎦⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎡x(0)x(1)⋮x(m)⎦⎥⎥⎥⎤
Y=[y(0)y(1)⋮y(m)] Y = \left[ \begin{matrix} y^{(0)} \\ y^{(1)} \\ \vdots\\ y^{(m)} \\ \end{matrix} \right] Y=⎣⎢⎢⎢⎡y(0)y(1)⋮y(m)⎦⎥⎥⎥⎤
Θ=[θ0θ1⋮θn] \Theta = \left[ \begin{matrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \\ \end{matrix} \right] Θ=⎣⎢⎢⎢⎡θ0θ1⋮θn⎦⎥⎥⎥⎤
如图所示为一个简单的神经网络,仅包含一个输入层和一个输出层,没有任何的隐藏层;对于其中的某一个样本x(i)x^{(i)}x(i)来说,其输出的预测值y^(i)\hat y^{(i)}y^(i)为:
(1)y^(i)=θ0x0(i)+θ1x1(i)+...+θnxn(i)=x(i)θ
\hat y^{(i)} = \theta_0x_0^{(i)} + \theta_1x_1^{(i)} + ... + \theta_nx_n^{(i)} = x^{(i)}\theta \tag{1}
y^(i)=θ0x0(i)+θ1x1(i)+...+θnxn(i)=x(i)θ(1)
则所有样本的预测值Y^\hat YY^为:
Y^=[y^(0)y^(1)⋮y^(m)]
\hat Y = \left[
\begin{matrix}
\hat y^{(0)} \\
\hat y^{(1)} \\
\vdots \\
\hat y^{(m)}
\end{matrix}
\right]
Y^=⎣⎢⎢⎢⎡y^(0)y^(1)⋮y^(m)⎦⎥⎥⎥⎤
我们以预测值与真实值的平方误差为损失函数LLL:
(2)L=1m∑i=1m12(y^(i)−y(i))2=12m∑i=1m(x(i)θ−y(i))2
L = \frac{1}{m}\sum_{i=1}^m\frac{1}{2}(\hat y^{(i)} - y^{(i)})^2 \\
= \frac{1}{2m}\sum_{i=1}^m( x^{(i)}\theta - y^{(i)})^2 \tag{2}
L=m1i=1∑m21(y^(i)−y(i))2=2m1i=1∑m(x(i)θ−y(i))2(2)
假设我们现在要计算θj\theta_jθj经梯度下降后的更新值,其中α\alphaα为学习率:
(3)θj=θj−α∂L∂θj
\theta_j = \theta_j - \alpha\frac{\partial L}{\partial \theta_j} \tag{3}
θj=θj−α∂θj∂L(3)
我们对损失函数,即公式(2)求θj\theta_jθj的微分:
(4)∂L∂θj=1m∑i=1m(x(i)θ−y(i))∂(x(i)θ)∂θj=1m∑i=1m(x(i)θ−y(i))xj(i)
\frac{\partial L}{\partial \theta_j} = \frac{1}{m}\sum_{i=1}^m( x^{(i)}\theta - y^{(i)})\frac{\partial( x^{(i)}\theta)}{\partial \theta_j} \\
=\frac{1}{m}\sum_{i=1}^m( x^{(i)}\theta - y^{(i)})x_j^{(i)} \tag{4}
∂θj∂L=m1i=1∑m(x(i)θ−y(i))∂θj∂(x(i)θ)=m1i=1∑m(x(i)θ−y(i))xj(i)(4)
我们记e(i)=x(i)θ−y(i)e^{(i)} = x^{(i)}\theta -y^{(i)}e(i)=x(i)θ−y(i),用EEE表示所有的e(i)e^{(i)}e(i)有:
E=[e(0)e(1)⋮e(m)]=[x(0)θ−y(0)x(1)θ−y(1)⋮x(m)θ−y(m)]=XΘ−Y
E=\left[
\begin{matrix}
e^{(0)} \\
e^{(1)} \\
\vdots \\
e^{(m)}
\end{matrix}
\right]=
\left[
\begin{matrix}
x^{(0)}\theta -y^{(0)} \\
x^{(1)}\theta -y^{(1)} \\
\vdots \\
x^{(m)}\theta -y^{(m)}
\end{matrix}
\right] = X\Theta-Y
E=⎣⎢⎢⎢⎡e(0)e(1)⋮e(m)⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡x(0)θ−y(0)x(1)θ−y(1)⋮x(m)θ−y(m)⎦⎥⎥⎥⎤=XΘ−Y
则公式(4)可表示为:
(5)∂L∂θj=1m∑i=1me(i)xj(i)=1m(xj(0),xj(1),...,xj(m))E
\frac{\partial L}{\partial \theta_j}=\frac{1}{m}\sum_{i=1}^me^{(i)}x_j^{(i)} \\
=\frac{1}{m}(x_j^{(0)},x_j^{(1)},...,x_j^{(m)})E \tag{5}
∂θj∂L=m1i=1∑me(i)xj(i)=m1(xj(0),xj(1),...,xj(m))E(5)
将公式(5)代入公式(3)中可以得到:
(6)θj=θj−α1m(xj(0),xj(1),...,xj(m))E
\theta_j = \theta_j - \alpha\frac{1}{m}(x_j^{(0)},x_j^{(1)},...,x_j^{(m)})E \tag{6}
θj=θj−αm1(xj(0),xj(1),...,xj(m))E(6)
因此,我们可以得到所有权重的梯度更新为:
Θ=[θ0θ1⋮θn]=[θ0θ1⋮θn]−αm[x0(0)x0(1)⋯x0(m)x1(0)x1(1)⋯x1(m)⋮⋮⋱⋮xn(0)xn(1)⋯xn(m)]E=Θ−αmXTE=Θ−αmXT(XΘ−Y)
\Theta = \left[
\begin{matrix}
\theta_0 \\
\theta_1 \\
\vdots \\
\theta_n \\
\end{matrix}
\right] =
\left[
\begin{matrix}
\theta_0 \\
\theta_1 \\
\vdots \\
\theta_n \\
\end{matrix}
\right] -
\frac{\alpha}{m} \left[
\begin{matrix}
x_0^{(0)} & x_0^{(1)} & \cdots & x_0^{(m)} \\
x_1^{(0)} & x_1^{(1)} & \cdots & x_1^{(m)} \\
\vdots & \vdots & \ddots & \vdots\\
x_n^{(0)} & x_n^{(1)} & \cdots & x_n^{(m)}
\end{matrix}
\right]E \\
= \Theta- \frac{\alpha}{m}X^TE=\Theta- \frac{\alpha}{m}X^T(X\Theta-Y)
Θ=⎣⎢⎢⎢⎡θ0θ1⋮θn⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡θ0θ1⋮θn⎦⎥⎥⎥⎤−mα⎣⎢⎢⎢⎢⎡x0(0)x1(0)⋮xn(0)x0(1)x1(1)⋮xn(1)⋯⋯⋱⋯x0(m)x1(m)⋮xn(m)⎦⎥⎥⎥⎥⎤E=Θ−mαXTE=Θ−mαXT(XΘ−Y)