LeetCode-Largest Triangle Area

Description:
You have a list of points in the plane. Return the area of the largest triangle that can be formed by any 3 of the points.

Example:

Input: points = [[0,0],[0,1],[1,0],[0,2],[2,0]]
Output: 2
Explanation: 
The five points are show in the figure below. The red triangle is the largest.

在这里插入图片描述
Notes:

  • 3 <= points.length <= 50.
  • No points will be duplicated.
  • -50 <= points[i][j] <= 50.
  • Answers within 10^-6 of the true value will be accepted as correct.

题意:在坐标轴中,给定一定数量的坐标点(x, y),要求找出三个点,使这三个点构成的三角形的面积最大;

解法:假设我们选取的三个点为A(x1,y1),B(x2,y2),C(x3,y3);D点是过A点作BC的垂线的交点;那么可以得到三角形的面积为:
S=12∣BC∣∣AD∣S = \frac{1} {2} |BC| |AD|S=21BCAD
S=12∣BC∣∣BA∣sinθS = \frac{1} {2} |BC| |BA| sin\thetaS=21BCBAsinθ
S=12∣BC⃗×BA⃗∣S = \frac{1} {2} |\vec {BC}\times \vec {BA}|S=21BC×BA
S=12∣(x3−x2,y3−y2)×(x1−x2,y1−y2)∣S = \frac{1} {2} | (x_3-x_2, y_3-y_2)\times(x_1-x_2, y_1-y_2) |S=21(x3x2,y3y2)×(x1x2,y1y2)
S=12∣(x3−x2)(y1−y2)−(y3−y2)(x1−x2)∣S = \frac{1} {2} |(x_3-x_2)(y_1-y_2)-(y_3-y_2)(x_1-x_2)|S=21(x3x2)(y1y2)(y3y2)(x1x2)
S=12∣x1y2+x2y3+x3y1−x1y3−x2y1−x3y2∣S = \frac{1} {2} |x_1y_2+x_2y_3+x_3y_1-x_1y_3-x_2y_1-x_3y_2|S=21x1y2+x2y3+x3y1x1y3x2y1x3y2
在这里插入图片描述
我们遍历所有可能的组合,返回面积最大的那个;

Java
class Solution {
    public double largestTriangleArea(int[][] points) {
        double result = 0L;
        for (int[] p1 : points)
            for (int[] p2 : points) 
                for (int[] p3 : points) {
                    result = Math.max(result, 0.5 * Math.abs(p1[0] * p2[1] + p2[0] * p3[1] + p3[0] * p1[1] -
                                                             p1[0] * p3[1] - p2[0] * p1[1] - p3[0] * p2[1]));
                }
        return result;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值