Description:
You have a list of points in the plane. Return the area of the largest triangle that can be formed by any 3 of the points.
Example:
Input: points = [[0,0],[0,1],[1,0],[0,2],[2,0]]
Output: 2
Explanation:
The five points are show in the figure below. The red triangle is the largest.
Notes:
- 3 <= points.length <= 50.
- No points will be duplicated.
- -50 <= points[i][j] <= 50.
- Answers within 10^-6 of the true value will be accepted as correct.
题意:在坐标轴中,给定一定数量的坐标点(x, y),要求找出三个点,使这三个点构成的三角形的面积最大;
解法:假设我们选取的三个点为A(x1,y1),B(x2,y2),C(x3,y3);D点是过A点作BC的垂线的交点;那么可以得到三角形的面积为:
S=12∣BC∣∣AD∣S = \frac{1} {2} |BC| |AD|S=21∣BC∣∣AD∣
S=12∣BC∣∣BA∣sinθS = \frac{1} {2} |BC| |BA| sin\thetaS=21∣BC∣∣BA∣sinθ
S=12∣BC⃗×BA⃗∣S = \frac{1} {2} |\vec {BC}\times \vec {BA}|S=21∣BC×BA∣
S=12∣(x3−x2,y3−y2)×(x1−x2,y1−y2)∣S = \frac{1} {2} | (x_3-x_2, y_3-y_2)\times(x_1-x_2, y_1-y_2) |S=21∣(x3−x2,y3−y2)×(x1−x2,y1−y2)∣
S=12∣(x3−x2)(y1−y2)−(y3−y2)(x1−x2)∣S = \frac{1} {2} |(x_3-x_2)(y_1-y_2)-(y_3-y_2)(x_1-x_2)|S=21∣(x3−x2)(y1−y2)−(y3−y2)(x1−x2)∣
S=12∣x1y2+x2y3+x3y1−x1y3−x2y1−x3y2∣S = \frac{1} {2} |x_1y_2+x_2y_3+x_3y_1-x_1y_3-x_2y_1-x_3y_2|S=21∣x1y2+x2y3+x3y1−x1y3−x2y1−x3y2∣
我们遍历所有可能的组合,返回面积最大的那个;
Java
class Solution {
public double largestTriangleArea(int[][] points) {
double result = 0L;
for (int[] p1 : points)
for (int[] p2 : points)
for (int[] p3 : points) {
result = Math.max(result, 0.5 * Math.abs(p1[0] * p2[1] + p2[0] * p3[1] + p3[0] * p1[1] -
p1[0] * p3[1] - p2[0] * p1[1] - p3[0] * p2[1]));
}
return result;
}
}