LeetCode-Longest Continuous Increasing Subsequence

博客围绕给定的一维数组,要求找出最长连续增长的子数组。通过定义起始位置,找到连续增长的最后一个位置得出子数组长度,再比较各长度得到结果。给出了示例说明,且数组长度不超10000。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description:
Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).

Example 1:

Input: [1,3,5,4,7]
Output: 3

Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. Even though [1,3,5,7] is also an increasing subsequence, it’s not a continuous one where 5 and 7 are separated by 4.

Example 2:

Input: [2,2,2,2,2]
Output: 1

Explanation: The longest continuous increasing subsequence is [2], its length is 1.

Note: Length of the array will not exceed 10,000.

题意:给定一个一维数组,要求找到最长连续增长的子数组;

解法:定义一个起始位置,找到连续增长的最后一个位置,就可以得出这个子数组的长度,比较各个长度得到其最长连续增长的子数组的长度;

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int st = 0;
        int maxLen = 0;
        for(int i = 1; i < nums.length; i++) {
            if (nums[i] <= nums[i-1]) {
                maxLen = Math.max(maxLen, i - st);
                st = i;
            }
        }
        maxLen = Math.max(maxLen, nums.length - st);
        return maxLen;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值