#include<iostream>
#include<opencv2/opencv.hpp>
#include<vector>
using namespace cv;
using namespace std;
Mat grayImage, cannyImage;
int g_nMinThred = 128, g_nMaxThred = 255;
//有滚动条事件时,可以进入回调函数
void on_Trackbar(int, void *)
{
//为了得到二值图像,对灰度图进行边缘检测
Canny(grayImage, cannyImage, g_nMinThred, g_nMaxThred, 3);
//在得到的二值图像中寻找轮廓
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(cannyImage, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
//绘制轮廓
for (int i = 0; i < (int)contours.size(); i++)
{
drawContours(cannyImage, contours, i, Scalar(255), 1, 8);
}
//计算轮廓的矩
for (int i = 0; i < (int)contours.size(); i++)
{
Moments g_vMoments = moments(contours[i], true);
cout << "【用矩计算出来的第" << i << "个轮廓的面积为:】" << g_vMoments.m00 << endl;
}
imshow("【处理后的图像】", cannyImage);
}
int main()
{
Mat srcImage = imread("group.jpg");
namedWindow("【原图】", 0);
imshow("【原图】", srcImage);
//首先对图像进行空间的转换
cvtColor(srcImage, grayImage, CV_BGR2GRAY);
//对灰度图进行滤波
GaussianBlur(grayImage, grayImage, Size(3, 3), 0, 0);
imshow("【滤波后的图像】", grayImage);
createTrackbar("min", "【原图】", &g_nMinThred, 255, on_Trackbar);
on_Trackbar(g_nMinThred, 0);
createTrackbar("max", "【原图】", &g_nMaxThred, 255, on_Trackbar);
on_Trackbar(g_nMaxThred, 0);
waitKey(0);
return 0;
}
opencv3矩的计算-在图像中的应用-滚动条
最新推荐文章于 2024-04-26 01:45:18 发布
