【力扣-动态规划入门】【第 11 天】96. 不同的二叉搜索树

本文介绍了一种使用动态规划解决二叉搜索树计数问题的方法。通过递推公式dp[i]+=dp[j-1]*dp[i-j],实现了对不同二叉搜索树数量的有效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标题:96. 不同的二叉搜索树
难度:中等
天数:第11天,第2/2题

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

在这里插入图片描述

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

提示:

  • 1 <= n <= 19

来源:力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

为了便于理解,可查看最后解题思路:

class Solution {
    //动态规划 第 11 天 2/2
    public int numTrees(int n) {
        int[] dp = new int[n+1];
        //dp[0]赋值1 防止左子树*右子树 = 0 
        dp[0] = 1;
        for(int i = 1 ; i <= n; i++){
            //dp[i] 1-i(j)挨个当头部节点的和
            for(int j = 1; j <= i;j++){
                //元素j为头部节点   搜索树数量 = 左子树搜索树数量 * 右子树搜索树数量
                //j-1是j左子树搜索树的数量,i-j 是j 到右侧i 搜索树数量
                dp[i] += dp[j-1] * dp[i-j];
            }
        }

        return dp[n];
    }
}

------以下思路全部来自力扣大腿<代码随想录>的思路

n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

来看看n为3的时候,有哪几种情况。

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!
(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2位头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到的重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

此时我们已经找到的递推关系了,那么可以用动规五部曲在系统分析一遍。

确定dp数组(dp table)以及下标的含义
dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]

也可以理解是i的不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。

以下分析如果想不清楚,就来回想一下dp[i]的定义

确定递推公式
在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

dp数组如何初始化
初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

那么dp[0]应该是多少呢?

从定义上来讲,空节点也是一颗二叉树,也是一颗二叉搜索树,这是可以说得通的。

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

所以初始化dp[0] = 1

确定遍历顺序
首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

代码如下:

for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i; j++) {
        dp[i] += dp[j - 1] * dp[i - j];
    }
}

来自力扣大腿<代码随想录>的思路

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Crazy丶code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值