Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 124649 Accepted Submission(s): 30286
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3 1 2 10 0 0 0
Sample Output
2 5
分析:
因为n的取值范围太大,不优化直接计算肯定水不过;
因为A,B的值在运算时是固定不变的,所以肯定是一个周期数列;
f[i]和f[i-1]的取值只可能是0,1,2,3,4,5,6,所以A * f(n - 1) + B * f(n - 2)最多有7*7=49种可能的组合;
所以周期最大为49;
因为f[1]=f[2]=1,所以从f[3]开始遍历,只要出现f[i]和f[i-1]都为1的情况则说明进入了下一个周期;
那么周期就是i-2;
最后根据n和周期的值输出相应的数‘。
代码:
#include<iostream> using namespace std; int main() { int a, b, n; while (cin >> a >> b >> n, a + b + n) { int f[55]; f[2] = f[1] = 1; int zhouqi,i; for (i = 3;i <= 49;i++) { f[i] = (f[i - 1] * a + f[i - 2] * b) % 7; if (f[i] == f[i - 1] &&f[i]== 1) break; } zhouqi = i - 2; n = n%zhouqi; if (n == 0) cout << f[zhouqi] << endl; else cout << f[n] << endl; } return 0; }