8.正交匹配跟踪 Orthogonal Matching Pursuit (OMP)s

本文介绍并演示了正交匹配追踪(OMP)算法的应用,该算法是一种用于稀疏信号重建的方法,特别适用于噪声环境下的信号恢复。文章通过Python代码实现了OMP算法,并展示了在不同条件下的信号恢复效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OrthogonalMatchingPursuit and orthogonal_mp 实现了一个用来逼近在非零系数的个数上加约束的线性模型的拟合的OMP算法(比如L 0 pseudo-norm)

和 Least Angle Regression最小角回归 一样,作为一个前向特征选择方法,OMP可以用一个固定非零的数来逼近最优的解向量:

\text{arg\,min\,} ||y - X\gamma||_2^2 \text{ subject to } \||\gamma||_0 \leq n_{nonzero\_coefs}

或者说正交匹配算法可以针对一个特殊的误差而不是一个特殊的非零系数的个数,这一过程可以表达为:

\text{arg\,min\,} ||\gamma||_0 \text{ subject to } ||y-X\gamma||_2^2 \\leq \text{tol}

OMP是基于贪婪算法,包括在每一步原子(归一化的向量)与当前残差高度相关。它类似于简单 匹配追踪(MP)方法,但更好的,在每一次迭代中,通过使用的在前一个选择的字典元素的空间的正交投影重新计算残差。

import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import OrthogonalMatchingPursuit
from sklearn.linear_model import OrthogonalMatchingPursuitCV
from sklearn.datasets import make_sparse_coded_signal

n_components, n_features = 512, 100
n_nonzero_coefs = 17

# generate the data
###################

# y = Xw
# |x|_0 = n_nonzero_coefs

y, X, w = make_sparse_coded_signal(n_samples=1,
                                   n_components=n_components,
                                   n_features=n_features,
                                   n_nonzero_coefs=n_nonzero_coefs,
                                   random_state=0)

idx, = w.nonzero()

# distort the clean signal
##########################
y_noisy = y + 0.05 * np.random.randn(len(y))

# plot the sparse signal
########################
plt.figure(figsize=(7, 7))
plt.subplot(4, 1, 1)
plt.xlim(0, 512)
plt.title("Sparse signal")
plt.stem(idx, w[idx])

# plot the noise-free reconstruction
####################################

omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 2)
plt.xlim(0, 512)
plt.title("Recovered signal from noise-free measurements")
plt.stem(idx_r, coef[idx_r])

# plot the noisy reconstruction
###############################
omp.fit(X, y_noisy)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 3)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements")
plt.stem(idx_r, coef[idx_r])

# plot the noisy reconstruction with number of non-zeros set by CV
##################################################################
omp_cv = OrthogonalMatchingPursuitCV()
omp_cv.fit(X, y_noisy)
coef = omp_cv.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 4)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements with CV")
plt.stem(idx_r, coef[idx_r])

plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38)
plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit',
             fontsize=16)
plt.show()



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值