1、有监督学习(supervised learning)
不仅把训练数据丢给计算机,而且还把分类的结果(数据具有的标签)也一并丢给计算机分析。
计算机进行学习之后,再丢给它新的未知的数据,它也能计算出该数据导致各种结果的概率,给你一个最接近正确的结果。
由于计算机在学习的过程中不仅有训练数据,而且有训练结果(标签),因此训练的效果通常不错。
有监督学习的结果可分为两类:分类或回归。
2、无监督学习(unsupervised learning)
只给计算机训练数据,不给结果(标签),因此计算机无法准确地知道哪些数据具有哪些标签,只能凭借强大的计算能力分析数据的特征,从而得到一定的成果,通常是得到一些集合,集合内的数据在某些特征上相同或相似。
3、泛化能力(generalization ability)是指一个机器学习算法对于没有见过的样本的识别能力。我们也叫做举一反三的能力,或者叫做学以致用的能力。
4. 欠拟合
首先欠拟合就是模型没有很好地捕捉到数据特征,不能够很好地拟合数据
解决方法:
1)添加其他特征项,有时候我们模型出现欠拟合的时候是因为特征项不够导致的,可以添加其他特征项来很好地解决。例如,“组合”、“泛化”、“相关性”三类特征是特征添加的重要手段,无论在什么场景,都可以照葫芦画瓢,总会得到意想不到的效果。除上面的特征之外,“上下文特征”、“平台特征”等等,都可以作为特征添加的首选项。
2)添加多项式特征,这个在机器学习算法里面用的很普遍,例如将线性模型通过添加二次项或者三次项使模型泛化能力更强。例如上面的图片的例子。
3)减少正则化参数,正则化的目的是用来防止过拟合的,但是现在模型出现了欠拟合,则需要减少正则化参数。
5. 过拟合
通俗一点地来说过拟合就是模型把数据学习的太彻底,以至于把噪声数据的特征也学习到了,这样就会导致在后期测试的时候不能够很好地识别数据,即不能正确的分类,模型泛化能力太差。
解决方法:
1)重新清洗数据,导致过拟合的一个原因也有可能是数据不纯导致的,如果出现了过拟合就需要我们重新清洗数据。
2)增大数据的训练量,还有一个原因就是我们用于训练的数据量太小导致的,训练数据占总数据的比例过小。
3)采用正则化方法。正则化方法包括L0正则、L1正则和L2正则,而正则一般是在目标函数之后加上对于的范数。但是在机器学习中一般使用L2正则,下面看具体的原因。
L0范数是指向量中非0的元素的个数。L1范数是指向量中各个元素绝对值之和,也叫“稀疏规则算子”(Lasso regularization)。两者都可以实现稀疏性,既然L0可以实现稀疏,为什么不用L0,而要用L1呢?个人理解一是因为L0范数很难优化求解(NP难问题),二是L1范数是L0范数的最优凸近似,而且它比L0范数要容易优化求解。所以大家才把目光和万千宠爱转于L1范数。
L2范数是指向量各元素的平方和然后求平方根。可以使得W的每个元素都很小,都接近于0,但与L1范数不同,它不会让它等于0,而是接近于0。L2正则项起到使得参数w变小加剧的效果,但是为什么可以防止过拟合呢?一个通俗的理解便是:更小的参数值w意味着模型的复杂度更低,对训练数据的拟合刚刚好(奥卡姆剃刀),不会过分拟合训练数据,从而使得不会过拟合,以提高模型的泛化能力。还有就是看到有人说L2范数有助于处理 condition number不好的情况下矩阵求逆很困难的问题(具体这儿我也不是太理解)。
4)采用dropout方法。这个方法在神经网络里面很常用。dropout方法是ImageNet中提出的一种方法,通俗一点讲就是dropout方法在训练的时候让神经元以一定的概率不工作。
6、交叉验证(cross-validation)寻找模型超参数的方法
7、bias和variance的概念。模型的Error = Bias + Variance,Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。
8、 线性回归假设特征和结果满足线性关系。其实线性关系的表达能力非常强大,每个特征对结果的影响强弱可以由前面的参数体现,而且每个特征变量可以首先映射到一个函数,然后再参与线性计算。这样就可以表达特征与结果之间的非线性关系。
9、损失函数(cost)最小二乘法。
10、 牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数f (x)的泰勒级数的前面几项来寻找方程f (x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。另外,因为拟牛顿法不需要二阶导数的信息,所以有时比牛顿法更为有效。如今,优化软件中包含了大量的拟牛顿算法用来解决无约束,约束,和大规模的优化问题。梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。
11、线性回归的评估指标
残差估计
总体思想是计算实际值与预测值间的差值简称残差。从而实现对回归模型的评估,一般可以画出残差图,进行分析评估、估计模型的异常值、同时还可以检查模型是否是线性的、以及误差是否随机分布。
2、均方误差(Mean Squared Error, MSE)
均方误差是线性模型拟合过程中,最小化误差平方和(SSE)代价函数的平均值。MSE可以用于不同模型的比较,或是通过网格搜索进行参数调优,以及交叉验证等。
3、决定系数
可以看做是MSE的标准化版本,用于更好地解释模型的性能。换句话说,决定系数是模型捕获相应反差的分数。
12、sklearn线性回归的参数详解
LinearRegression(fit_intercept=True,normalize=False,copy_X=True,n_jobs=1)
fit_intercept:是否有截据,如果没有则直线过原点。
normalize:是否将数据归一化。
copy_X:默认为True,当为True时,X会被copied,否则X将会被覆写。(这一参数的具体作用没明白,求大神指教了)
n_jobs:默认值为1。计算时使用的核数。