思路:对于某一颗子树来说,只需要统计这颗子树拥有的颜色和这颗子树独有的颜色,两者一减就是答案,考虑一直DFS到子树,然后向上合并,合并的时候将结点数小的往大的合并,这样可以做到nlogn的复杂度
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
struct Edge
{
int v,id;
Edge(){};
Edge(int vv,int idd):v(vv),id(idd){};
};
vector<Edge>e[maxn];
int n,c[maxn],sum[maxn],res[maxn],ans[maxn];
map<int,int>cnt[maxn]; //cnt[u][i] 结点u颜色i有多少个
void dfs(int u,int fa,int id)
{
cnt[u][c[u]]=1;
ans[u]=cnt[u][c[u]]<sum[c[u]]?1:0;
for(int i = 0;i<e[u].size();i++)
{
int v = e[u][i].v;
int id = e[u][i].id;
if(v==fa)continue;
dfs(v,u,id);
if(cnt[u].size()<cnt[v].size())
{
swap(ans[u],ans[v]);
swap(cnt[u],cnt[v]);
}
for(map<int,int>::iterator it = cnt[v].begin();it!=cnt[v].end();it++)
{
int &num = cnt[u][it->first];
if(num==0 && num+it->second<sum[it->first])
++ans[u];
else if (num && num+it->second==sum[it->first])
--ans[u];
num+=it->second;
}
}
res[id]=ans[u];
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
memset(sum,0,sizeof(sum));
for(int i = 0;i<=n;i++)
e[i].clear(),cnt[i].clear();
for(int i = 1;i<=n;i++)
scanf("%d",&c[i]),sum[c[i]]++;
for(int i = 1;i<=n-1;i++)
{
int u,v;
scanf("%d%d",&u,&v);
e[u].push_back(Edge(v,i));
e[v].push_back(Edge(u,i));
}
dfs(1,-1,0);
for(int i = 1;i<=n-1;i++)
printf("%d\n",res[i]);
}
}
Description
Bobo has a tree with n vertices numbered by 1,2,…,n and (n-1) edges. The i-th vertex has color c i, and the i-th edge connects vertices a iand b i.
Let C(x,y) denotes the set of colors in subtree rooted at vertex x deleting edge (x,y).
Bobo would like to know R_i which is the size of intersection of C(a i,b i) and C(b i,a i) for all 1≤i≤(n-1). (i.e. |C(a i,b i)∩C(b i,a i)|)
Input
The input contains at most 15 sets. For each set:
The first line contains an integer n (2≤n≤10 5).
The second line contains n integers c 1,c 2,…,c n (1≤c_i≤n).
The i-th of the last (n-1) lines contains 2 integers a i,b i (1≤a i,b i≤n).
Output
For each set, (n-1) integers R 1,R 2,…,R n-1.
Sample Input
4
1 2 2 1
1 2
2 3
3 4
5
1 1 2 1 2
1 3
2 3
3 5
4 5
Sample Output
1
2
1
1
1
2
1
Hint