POJ 2112 Optimal Milking(二分+floyd+最大流)

通过使用Floyd算法预处理所有点间的最短路径,并结合二分查找与网络流算法,解决如何将牛最优分配给各乳挤机的问题,以确保最远行走的牛的距离尽可能短。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意k个机器,每个机器最多服务m头牛。c头牛,每个牛需要1台机器来服务。告诉你牛与机器(牛与牛,机器与机器)每个之间的直接距离。问:让所有的牛都被服务的情况下,使走的最远的牛的距离最短,求这个距离。

思路:弱化版的POJ2391,用floyd算法求出任意两点(牛或机器)之间的最短距离.然后我们二分该距离,建立网络流图.假设我们当前二分的距离为x.首先是源点s到任意牛i之间有边(s,i,1).    然后是任意机器j到汇点t之间有边(j,t,m).然后对于任意牛i和机器j,如果他们之间的距离<=x,那么就添加一条(i,j,1)的边.最终我们求最大流,看看最大流是否等于牛的数目C即可.



#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <string>
#include <set>
#include <ctime>
#include <cmath>
#include <cctype>
using namespace std;
#define maxn 600
#define INF 1e9
#define LLINF 1LL<<60
#define LL long long
int cas=1,T;
struct Edge
{
	int from,to,cap,flow;
	Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
int n,m,k,c;
struct Dinic
{
//	int n,m;
    int s,t;
	vector<Edge>edges;        //边数的两倍
	vector<int> G[maxn];      //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
	bool vis[maxn];           //BFS使用
	int d[maxn];              //从起点到i的距离
	int cur[maxn];            //当前弧下标
	void init()
	{
	   for (int i=0;i<=2*n+1;i++)
		   G[i].clear();
	   edges.clear();
	}
	void AddEdge(int from,int to,int cap)
	{
		edges.push_back(Edge(from,to,cap,0));
		edges.push_back(Edge(to,from,0,0));        //反向弧
		int mm=edges.size();
		G[from].push_back(mm-2);
		G[to].push_back(mm-1);
	}
	bool BFS()
	{
		memset(vis,0,sizeof(vis));
		queue<int>q;
		q.push(s);
		d[s]=0;
		vis[s]=1;
		while (!q.empty())
		{
			int x = q.front();q.pop();
			for (int i = 0;i<G[x].size();i++)
			{
				Edge &e = edges[G[x][i]];
				if (!vis[e.to] && e.cap > e.flow)
				{
					vis[e.to]=1;
					d[e.to] = d[x]+1;
					q.push(e.to);
				}
			}
		}
		return vis[t];
	}

	int DFS(int x,int a)
	{
		if (x==t || a==0)
			return a;
		int flow = 0,f;
		for(int &i=cur[x];i<G[x].size();i++)
		{
			Edge &e = edges[G[x][i]];
			if (d[x]+1 == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0)
			{
				e.flow+=f;
				edges[G[x][i]^1].flow-=f;
				flow+=f;
				a-=f;
				if (a==0)
					break;
			}
		}
		return flow;
	}

	int Maxflow(int s,int t)
	{
		this->s=s;
		this->t=t;
		int flow = 0;
		while (BFS())
		{
			memset(cur,0,sizeof(cur));
			flow+=DFS(s,INF);
		}
		return flow;
	}
}dc;

int dis[maxn][maxn];
void floyd()
{
    for (int k = 1;k<=n;k++)
		for (int i = 1;i<=n;i++)
			for (int j = 1;j<=n;j++)
				if (dis[i][k]<INF&& dis[k][j]<INF)
					dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
bool solve(int limit,int full_flow)
{
	dc.init();
	for (int i = 1;i<=c;i++)
	{
		dc.AddEdge(0,k+i,1);
	}
	for (int i = 1;i<=k;i++)
	{
		dc.AddEdge(i,k+c+1,m);
	}
	for (int i = 1;i<=c;i++)
	{
		for (int j = 1;j<=k;j++)
		{
			if (dis[i+k][j] <=limit && dis[i+k][j]!=0)
				dc.AddEdge(i+k,j,1);
		}
	}
	return dc.Maxflow(0,k+c+1)==full_flow;
}
int main()
{
	//freopen("in","r",stdin);
//	int k,c,m;
	while (scanf("%d%d%d",&k,&c,&m)!=EOF)
	{
		int l=0,r=0;
		int sum = 0;
		n=k+c;
		dc.init();
	for (int i = 1;i<=k+c;i++)
			for (int j = 1;j<=k+c;j++)
				dis[i][j]= i==j?0:INF;
		for(int i = 1;i<=n;i++)
		{
			for (int j = 1;j<=n;j++)
			{	
				scanf("%d",&dis[i][j]);
                if (i!=j && dis[i][j]==0)
					dis[i][j]=INF;
			}
		}
        floyd();
		for (int i = 1;i<=n;i++)
			for (int j = 1;j<=n;j++)
				if (dis[i][j]<INF)
					r=max(r,dis[i][j]);
        
         while (l<r)
		{
			int mid = l+(r-l)/2;
			if (solve(mid,c))
				r=mid;
			else
				l=mid+1;
		}
		printf("%d\n",r);
	}
	//printf("time=%.3lf",(double)clock()/CLOCKS_PER_SEC);
	return 0;
}

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C. 

Each milking point can "process" at most M (1 <= M <= 15) cows each day. 

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine. 

Input

* Line 1: A single line with three space-separated integers: K, C, and M. 

* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line. 

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值