给定一个正整数 n,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3
输出:
[
[ 1, 2, 3 ],
[ 8, 9, 4 ],
[ 7, 6, 5 ]
]
分析:
暴力解法:
- 对于n,矩阵的层数layer=⌈n/2⌉layer = \left \lceil n/2 \right \rceillayer=⌈n/2⌉。
- 对于n,每一层矩阵的边长为(这里定义最外层的index为0,里层加1)sizelayer:[n,n−2,n−4,...,0]size^{layer} :[n,n-2,n-4,...,0]sizelayer:[n,n−2,n−4,...,0]。
- 每一层layer开始的坐标为 [layer,layer] 。 (同样最外层为0,往里层依次加一)
- 每一层layer开始的数字为beginnumlayer=[0,size0×4,(size0+size1)×4,size0+size1+size2)×4...]+1beginnum^{layer} = [0,size^{0}\times4,(size^{0}+size^{1})\times4,size^{0}+size^{1}+size^{2})\times4...]+1beginnumlayer=[0,size0×4,(size0+size1)×4,size0+size1+size2)×4...]+1(最后的加一具有广播特性,也就是矩阵的加法)。
根据以上特点就可以一圈一圈的给矩阵赋值了。
import numpy as np
class Solution:
def generateMatrix(self, n):
"""
:type n: int
:rtype: List[List[int]]
"""
def tomartix(martix,lay,sizes):
beginnum = sum(sizes[:lay])*4
if lay <= len(sizes)-1:
size = sizes[lay]
else:
size = 0
if size == 0:
beginnum += 1
martix[lay][lay] = beginnum
for i in range(lay,lay+size):
beginnum += 1
martix[lay][i] = beginnum
for i in range(lay,lay+size):
beginnum+=1
martix[i][lay+size] = beginnum
for i in range(lay+size,lay,-1):
beginnum+=1
martix[lay+size][i] = beginnum
for i in range(lay+size,lay,-1):
beginnum +=1
martix[i][lay] = beginnum
layer = int(np.ceil(n/2))
martix = [[0]* n for i in range(n)]
sizes = list(range(n-1,0,-2))
for i in range(layer):
tomartix(martix,i,sizes)
return martix
算法运行速度比较慢,继续学习比较快的算法。