使用了Filtered Jaccard Loss的云分割网络
loss function分析
图分割网络广泛应用的SSoft Jaccard/Dice loss funtion在0 1分类问题中的公式如下:
其中ttt代表了GT而yyy代表了网络的输出。N表示t中的像素的总数,yi∈[0,1]y_i \in [0,1]yi∈[0,1] 并且ti∈{
0,1}t_i \in\{0,1\}ti∈{
0,1}代表第 i 个像素的 y 和 t ,设置ϵ=10−7\epsilon = 10^{-7}ϵ=10−7防止除0,然而这个损失函数会因为ground truth中没有真值1 而被过度惩罚。
让我们考虑一个 2x2 的全 0 矩阵,以及2个可能的预测 y1=[0.01,0.01,0.01,0.01]y_1 = [0.01,0.01,0.01,0.01]y1=[0.01,0.01,0.01,0.01]和 y2=[0.99,0.99,0.99,0.99]y_2 = [0.99,0.99,0.99,0.99]y2=[0.99,0.99,0.99,<