Description
Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
nums: [1,2,3]
Result: [1,2] (of course, [1,3] will also be ok)
Example 2:
nums: [1,2,4,8]
Result: [1,2,4,8]
Solution
在一个集合中找到一个满足任两个数之间能整除的最长子集,对顺序没有要求,我们可以先排序
若从小到大排序,则从小到大取数加入子集的过程中满足:新加入的数能被所有已在集合中的数整除,进一步应该满足前一个数是后一个数的因子。
这样我们可以用动态规划得到全局最优解:
设 dp[n]
表示最大数为nums[n]
的最长子集,转移方程为:
dp[n] = max{ dp[i] + 1} [前提条件 nums[n] % nums[i] == 0]
Code
class Solution {
public:
vector<int> largestDivisibleSubset(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<int> dp(nums.size(), 1);
vector<int> parent(nums.size(), 0);
for (int i=0; i<nums.size(); i++) {
for (int j=0; j<i; j++) {
if (nums[i] % nums[j] == 0 && dp[i] < dp[j] + 1) {
dp[i] = dp[j] + 1;
parent[i] = j;
}
}
}
int m = 0, mi = 0;
for (int i=0; i<dp.size(); i++) {
if (dp[i] > m) {
m = dp[i];
mi = i;
}
}
vector<int> ret;
while (m--) {
ret.push_back(nums[mi]);
mi = parent[mi];
}
return ret;
}
};
LeetCode 368. Largest Divisible Subset
LeetCode C++ Solution with Explanations