首先我们要先了解下单例的四大原则:
1.构造私有。
2.以静态方法或者枚举返回实例。
3.确保实例只有一个,尤其是多线程环境。
4.确保反序列换时不会重新构建对象。
我们常用的单例模式有:
饿汉模式、懒汉模式、双重锁懒汉模式、静态内部类模式、枚举模式,我们来逐一分析下这些模式的区别。
单例模式在单线程下一般分为懒汉模式,和饿汉模式,总体来说,懒汉模式的优点可以突出的显现;但是当变成多线程时,饿汉模式可以很好的避免安全隐患,而懒汉模式则不可以。
1.饿汉模式:
public class Singleton {
private static Singleton instance = new Singleton();
private Singleton (){}
public static Singleton getInstance() {
return instance;
}
}
饿汉模式在类被初始化时就已经在内存中创建了对象,以空间换时间,故不存在线程安全问题。
2.懒汉模式:
public class Singleton {
private static Singleton instance;
private Singleton (){}
public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}
懒汉模式在方法被调用后才创建对象,以时间换空间,在多线程环境下存在风险。
3.双重锁懒汉模式(Double Check Lock)
public class Singleton {
private static volatile Singleton instance; //1
private Singleton (){} //2
public static Singleton getInstance() {
if (instance == null) {
//刚开始所有进入这行代码的线程,instance对象都是null
//可能是第一个进去的线程,这时候instance对象都是null
//也可能是第一个线程之后的线程进入并执行
synchronized (Singleton.class) {
//尝试获取同一个对象锁的线程,尝试获取锁,获取不到就阻塞
//锁住类名的class(这里用到了反射的知识)
if(instance == null) {
//初始化操作,使用volatile关键字禁止指令重排序
instance = new Singleton(); //3
}
}
}
return instance;
}
}
DCL模式的优点就是,只有在对象需要被使用时才创建,第一次判断 instance == null为了避免非必要加锁,当第一次加载时才对实例进行加锁再实例化。这样既可以节约内存空间,又可以保证线程安全。但是,由于jvm存在乱序执行功能,DCL也会出现线程不安全的情况。故使用volatile关键字修饰,具体分析如下:
这段代码其实是分为三步执行:
Ⅰ、给 instance分配内存
Ⅱ、调用 Singleton 的构造函数来初始化成员变量
Ⅲ、将instance对象指向分配的内存空间(执行完这步instance 就为非 null 了), 但是在 JVM 的即时编译器中存在指令重排序的优化。也就是说上面的第二步和第三步的顺序是不能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在 3 执行完毕、2 未执行之前,被线程二抢占了,这时 instance 已经是非 null 了(但却没有初始化),所以线程二会直接返回 instance,然后使用,然后顺理成章地报错。
4.静态内部类模式
public class Singleton {
private static class LazyHolder {
private static Singleton instance = new Singleton();
}
private Singleton (){}
public static Singleton getInstance() {
return LazyHolder.instance;
}
}
静态内部类的优点是:外部类加载时并不需要立即加载内部类,内部类不被加载则不去初始化instance,故而不占内存。即当SingleTon第一次被加载时,并不需要去加载LazyHolder,只有当getInstance()方法第一次被调用时,才会去初始化instance,第一次调用getInstance()方法会导致虚拟机加载LazyHolder类,这种方法不仅能确保线程安全,也能保证单例的唯一性,同时也延迟了单例的实例化。
那么,静态内部类又是如何实现线程安全的呢?首先,我们先了解下类的加载时机。
类加载时机:JAVA虚拟机在有且仅有的5种场景下会对类进行初始化。
1.遇到new、getstatic、setstatic或者invokestatic这4个字节码指令时,对应的java代码场景为:new一个关键字或者一个实例化对象时、读取或设置一个静态字段时(final修饰、已在编译期把结果放入常量池的除外)、调用一个类的静态方法时。
2.使用java.lang.reflect包的方法对类进行反射调用的时候,如果类没进行初始化,需要先调用其初始化方法进行初始化。
3.当初始化一个类时,如果其父类还未进行初始化,会先触发其父类的初始化。
4.当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的类),虚拟机会先初始化这个类。
5.当使用JDK 1.7等动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。
这5种情况被称为是类的主动引用,注意,这里《虚拟机规范》中使用的限定词是"有且仅有",那么,除此之外的所有引用类都不会对类进行初始化,称为被动引用。静态内部类就属于被动引用的行列。
我们再回头看下getInstance()方法,调用的是LazyHolder.instance,取的是LazyHolder里的instance对象,跟上面那个DCL方法不同的是,getInstance()方法并没有多次去new对象,故不管多少个线程去调用getInstance()方法,取的都是同一个instance对象,而不用去重新创建。当getInstance()方法被调用时,LazyHolder才在SingleTon的运行时常量池里,把符号引用替换为直接引用,这时静态对象INSTANCE也真正被创建,然后再被getInstance()方法返回出去,这点同饿汉模式。那么instance在创建过程中又是如何保证线程安全的呢?在《深入理解JAVA虚拟机》中,有这么一句话:
虚拟机会保证一个类的<clinit>()方法在多线程环境中被正确地加锁、同步,如果多个线程同时去初始化一个类,那么只会有一个线程去执行这个类的<clinit>()方法,其他线程都需要阻塞等待,直到活动线程执行<clinit>()方法完毕。如果在一个类的<clinit>()方法中有耗时很长的操作,就可能造成多个进程阻塞(需要注意的是,其他线程虽然会被阻塞,但如果执行<clinit>()方法后,其他线程唤醒之后不会再次进入<clinit>()方法。同一个加载器下,一个类型只会初始化一次。),在实际应用中,这种阻塞往往是很隐蔽的。
故而,可以看出instance在创建过程中是线程安全的,所以说静态内部类形式的单例可保证线程安全,也能保证单例的唯一性,同时也延迟了单例的实例化。
那么,是不是可以说静态内部类单例就是最完美的单例模式了呢?其实不然,静态内部类也有着一个致命的缺点,就是传参的问题,由于是静态内部类的形式去创建单例的,故外部无法传递参数进去,例如Context这种参数,所以,我们创建单例时,可以在静态内部类与DCL模式里自己斟酌。
5.枚举单例
public enum SingleTon{
INSTANCE;
public void method(){
//TODO
}
枚举在java中与普通类一样,都能拥有字段与方法,而且枚举实例创建是线程安全的,在任何情况下,它都是一个单例。