在上一期,我们看到了多个输入如何被封装,然后被塞入llm_engine中,接下来,通过_run_engine,我们要进行输入的处理了。
def _run_engine(
self, *, use_tqdm: bool
) -> List[Union[RequestOutput, EmbeddingRequestOutput]]:
# Initialize tqdm.
if use_tqdm:
num_requests = self.llm_engine.get_num_unfinished_requests()
pbar = tqdm(
total=num_requests,
desc="Processed prompts",
dynamic_ncols=True,
postfix=f"Generation Speed: {0:.2f} toks/s",
)
# Run the engine.
outputs: List[Union[RequestOutput, EmbeddingRequestOutput]] = []
total_toks = 0
while self.llm_engine.has_unfinished_requests():
step_outputs = self.llm_engine.step()
for output in step_outputs:
if output.finished:
outputs.append(output)
if use_tqdm:
if isinstance(output, RequestOutput):
# Calculate tokens only for RequestOutput
total_toks += sum(
len(stp.token_ids) for stp in output.outputs)
spd = total_toks / pbar.format_dict["elapsed"]
pbar.postfix = f"Generation Speed: {spd:.2f} toks/s"
pbar.update(1)
if use_tqdm:
pbar.close()
# Sort the outputs by request ID.
# This is necessary