CvMat成员分析



旧版本的OpenCV中的C结构体有 CvMat 和 CvMatND,目前我用的是 2.3 版,里面的文档指出 CvMat 和 CvMatND 弃用了,在C++封装中用 Mat 代替,另外旧版还有一个 IplImage,同样用 Mat 代替(可以参考博文 OpenCV中的结构体、类与Emgu.CV的对应表).
矩阵 (M) 中数据元素的地址计算公式:
addr(Mi0,i1,…im-1) = M.data + M.step[0] * i0 + M.step[1] * i1 + … + M.step[m-1] * im-1 (其中 m = M.dims M的维度)

data:Mat对象中的一个指针,指向内存中存放矩阵数据的一块内存 (uchar* data)
dims:Mat所代表的矩阵的维度,如 3 * 4 的矩阵为 2 维, 3 * 4 * 5 的为3维
channels:通道,矩阵中的每一个矩阵元素拥有的值的个数,比如说 3 * 4 矩阵中一共 12 个元素,如果每个元素有三个值,那么就说这个矩阵是 3 通道的,即 channels = 3。常见的是一张彩色图片有红、绿、蓝三个通道。
depth:深度,即每一个像素的位数(bits),在opencv的Mat.depth()中得到的是一个 0 – 6 的数字,分别代表不同的位数:enum { CV_8U=0, CV_8S=1, CV_16U=2, CV_16S=3, CV_32S=4, CV_32F=5, CV_64F=6 }; 可见 0和1都代表8位, 2和3都代表16位,4和5代表32位,6代表64位;

图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率。图像深度确定彩色图像的每个像素可能有的颜色 [1]   数,或者确定 灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大 灰度等级。比如一幅单色图像,若每个像素有8位 [2]   ,则最大灰度数目为2的8次方,即256。一幅彩色图像RGB3个分量的像素位数分别为4,4,2,则最大颜色数目为2的4+4+2次方,即1024,就是说像素的深度为10位,每个像素可以是1024种颜色中的一种。
例如:一幅画的尺寸是1024*768,深度为16,则它的数据量为1.5M。
计算如下:1024*768*16bit(位)=(1024*768*16)/8Byte(字节)=[(1024*768*16)/8]/1024KB=1536KB={[(1024*768*16)/8]/1024}/1024MB=1.5MB。

step:是一个数组,定义了矩阵的布局,具体见下面图片分析,另外注意 step1 (step / elemSize1),M.step[m-1] 总是等于 elemSize,M.step1(m-1)总是等于 channels;
elemSize : 矩阵中每一个元素的数据大小,如果Mat中的数据的数据类型是 CV_8U 那么 elemSize = 1,CV_8UC3 那么 elemSize = 3,CV_16UC2 那么 elemSize = 4;记住另外有个 elemSize1 表示的是矩阵中数据类型的大小,即 elemSize / channels 的大小



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值