SpringBoot通过kafka实现消息发送与接收(包括不能发送和消费kafka消息的采坑记录)

本文是Kafka踩坑记录,涉及服务端配置,如broker.id集群内要唯一,listeners和advertised.listeners需配本机ip:9092;客户端Java代码版本要与服务端对应;建立topic分区数应为同组consumer个数的整数倍。还提及了application.properties等配置及测试代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

kafka采坑记录:

    1、kafka服务端server.properties中的broker.id集群内需要唯一。

    2、kafka config文件中listeners和advertised.listeners需要配置本机ip:9092地址,不然消费不到数据。(如:192.168.217.128:9092)

    3、java代码客户端版本号需要与服务端版本号一一对应,不然消费不到数据。(如:我的kafka服务端是 kafka_2.11-1.1.0版本则我的java代码maven依赖的kafka-clients版本号为0.10.2.1)

    4、建立topic的分区时需要考虑到同组consumer的个数,分区数保持在consumer的整数倍,不然会浪费资源。

application.properties配置:


spring.application.name=ops
server.port=8888

#============== kafka ===================
kafka.consumer.servers=192.168.217.128:9092
kafka.consumer.enable.auto.commit=true
kafka.consumer.session.timeout=6000
kafka.consumer.auto.commit.interval=100
kafka.consumer.auto.offset.reset=earliest
kafka.consumer.topic=test
kafka.consumer.group.id=test
kafka.consumer.concurrency=10

kafka.producer.servers=192.168.217.128:9092
kafka.producer.retries=0
kafka.producer.batch.size=4096
kafka.producer.linger=1
kafka.producer.buffer.memory=40960

produver配置:

package com.cy.ops.config;

import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;

import java.util.HashMap;
import java.util.Map;

@Configuration
@EnableKafka
public class KafkaProducerConfig {

    @Value("${kafka.producer.servers}")
    private String servers;
    @Value("${kafka.producer.retries}")
    private int retries;
    @Value("${kafka.producer.batch.size}")
    private int batchSize;
    @Value("${kafka.producer.linger}")
    private int linger;
    @Value("${kafka.producer.buffer.memory}")
    private int bufferMemory;


    public Map<String, Object> producerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        props.put(ProducerConfig.RETRIES_CONFIG, retries);
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
        props.put(ProducerConfig.LINGER_MS_CONFIG, linger);
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }

    public ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }

    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<String, String>(producerFactory());
    }
}

consumer配置:

package com.cy.ops.config;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;

import java.util.HashMap;
import java.util.Map;

@Configuration
@EnableKafka
public class KafkaConsumerConfig {

    @Value("${kafka.consumer.servers}")
    private String servers;
    @Value("${kafka.consumer.enable.auto.commit}")
    private boolean enableAutoCommit;
    @Value("${kafka.consumer.session.timeout}")
    private String sessionTimeout;
    @Value("${kafka.consumer.auto.commit.interval}")
    private String autoCommitInterval;
    @Value("${kafka.consumer.group.id}")
    private String groupId;
    @Value("${kafka.consumer.auto.offset.reset}")
    private String autoOffsetReset;
    @Value("${kafka.consumer.concurrency}")
    private int concurrency;
    @Bean
    public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(concurrency);
        factory.getContainerProperties().setPollTimeout(1500);
        return factory;
    }

    public ConsumerFactory<String, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }


    public Map<String, Object> consumerConfigs() {
        Map<String, Object> propsMap = new HashMap<>();
        propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit);
        propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval);
        propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout);
        propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
        return propsMap;
    }


}

Listener配置:

package com.cy.ops.listener;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

@Component
public class Listener {

    protected final Logger logger = LoggerFactory.getLogger(this.getClass());

    @KafkaListener(topics = {"test_new"})
    public void listen(ConsumerRecord<?, ?> record) {
        System.out.println("kafka的key: " + record.key());
        System.out.println("kafka的value: " + record.value().toString());
    }

}

测试代码:

package com.cy.ops;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@SpringBootApplication
@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class KafkaTest {

    @Autowired
    private KafkaTemplate kafkaTemplate;

    @Test
    public void test(){
        kafkaTemplate.send("test_new", "hi", "444444444444455555555555555555");
    }

}

全篇文章完全纯手打,如果觉得对您有帮助,记得加关注给好评哟~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

地表最强菜鸡

你的鼓励将是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值