论文单位:旷视研究院
论文链接:https://arxiv.org/abs/2003.12243
作者:Jin Chen, Xijun Wang, Zichao Guo, Xiangyu Zhang, Jian Sun
摘要
旷视研究院提出一种新颖的卷积方式,名为动态区域感知卷积(DRConv),它能为特征具有相似表示的相应空间区域自动地分配定制卷积核,相较标准卷积,这种卷积方式大大地增强了对图像语义多样性的建模能力。DRConv通过可学习的指示器(learnable instructor)将逐步增加的通道维卷积核变换至空间维,这一方面增强了卷积的表征能力,另一方面控制计算成本并使平移不变性保持与标准卷积一致。(由于每个卷积层可以视为一次滤波操作,所以我把文中的filter理解为网络指定卷积层中的等效卷积核)。
DRConv是一种高效且灵活的卷积方法,适用于处理复杂且多变的空间信息分布,在各种模型(MobileNet series, ShuffleNetV2, etc.)与视觉任务(Classification, Face Recognition, Detection and Segmentation)中证实了其有效性和优越性。
介绍
目前主流的卷积操作,即标准卷积(standard convolution)是在空间域共享同一个卷积核的权值,如果想要捕获更有效的信息,只能通过重复堆叠卷积来实现,这样不仅计算效率低下,还会给模型优化带来困难。与共享卷积核方法不