CVPR 2021 论文解读I 动态区域感知卷积,进一步提升分类/检测/分割性能|Dynamic Region-Aware Convolution

旷视研究院的论文提出了动态区域感知卷积(DRConv),它能为特征相似的区域分配定制卷积核,增强图像语义多样性的建模能力,同时保持平移不变性。DRConv在分类、人脸识别、检测和分割任务中表现优越,尤其在轻量化网络中效果更佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dynamic Region-Aware Convolution

在这里插入图片描述

论文单位:旷视研究院

论文链接:https://arxiv.org/abs/2003.12243

作者:Jin Chen, Xijun Wang, Zichao Guo, Xiangyu Zhang, Jian Sun

摘要

旷视研究院提出一种新颖的卷积方式,名为动态区域感知卷积(DRConv),它能为特征具有相似表示的相应空间区域自动地分配定制卷积核,相较标准卷积,这种卷积方式大大地增强了对图像语义多样性的建模能力。DRConv通过可学习的指示器(learnable instructor)将逐步增加的通道维卷积核变换至空间维,这一方面增强了卷积的表征能力,另一方面控制计算成本并使平移不变性保持与标准卷积一致。(由于每个卷积层可以视为一次滤波操作,所以我把文中的filter理解为网络指定卷积层中的等效卷积核)。

DRConv是一种高效且灵活的卷积方法,适用于处理复杂且多变的空间信息分布,在各种模型(MobileNet series, ShuffleNetV2, etc.)与视觉任务(Classification, Face Recognition, Detection and Segmentation)中证实了其有效性和优越性。

介绍

目前主流的卷积操作,即标准卷积(standard convolution)是在空间域共享同一个卷积核的权值,如果想要捕获更有效的信息,只能通过重复堆叠卷积来实现,这样不仅计算效率低下,还会给模型优化带来困难。与共享卷积核方法不

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值