POJ_P2976 Dropping tests(01分数规划)

本文介绍了一种通过算法确定在给定的测试成绩中丢弃指定数量的成绩以提高累计平均分的方法。通过二分查找与Dinkelbach算法两种方式实现,并对比了它们的速度。输入包含多次测试的成绩和允许丢弃的成绩数量,输出则是可能达到的最高累计平均分。

POJ传送门
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8729 Accepted: 3041
Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.这里写图片描述

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is 这里写图片描述. However, if you drop the third test, your cumulative average becomes 这里写图片描述.

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0
Sample Output

83
100
Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

Source

Stanford Local 2005

随便搞搞了解一下,了解算法
一个二分一个Dinkelbach
速度比较(第一个是二分,第二个是Dinkelbach)
这里写图片描述

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 1005
#define eps 1e-6
inline int in(int x=0,int v=1,char ch=getchar()){
    while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();if(ch=='-') v=-1,ch=getchar();
    while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*v;
}
struct str{double d;int num;}d[N];
int a[N],b[N];int n,m,k;
inline int cmp(str a,str b){return a.d>b.d;}
void work1(){//二分 
    m=n-k;double l,r,mid,tmp;mid=0;
    for(int i=1;i<=n;i++) if(1.0*a[i]/b[i]>mid) mid=1.0*a[i]/b[i];
    l=0,r=mid;
    while(fabs(r-l)>eps){
        mid=(l+r)/2.0;
        for(int i=1;i<=n;i++) d[i].d=a[i]-mid*b[i],d[i].num=i;
        sort(d+1,d+n+1,cmp);tmp=0;
        for(int i=1;i<=m;i++) tmp+=d[i].d;
        if(tmp>0) l=mid;else r=mid;
    }
    printf("%.0f\n",l*100);
}
void work2(){//Dinkelbach
    m=n-k;long long p,q;double ans=0,L=1;
    while(fabs(ans-L)>eps){
        ans=L;
        for(int i=1;i<=n;i++) d[i].d=a[i]-L*b[i],d[i].num=i;
        sort(d+1,d+n+1,cmp);p=q=0;
        for(int i=1;i<=m;i++) p+=a[d[i].num],q+=b[d[i].num];
        L=p*1.0/q;
    }
    printf("%.0f\n",L*100);
}
int main(){
    while(scanf("%d%d",&n,&k)!=EOF&&(n||k)){
        for(int i=1;i<=n;i++) a[i]=in();
        for(int i=1;i<=n;i++) b[i]=in();
        work1();
        work2();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值