Counting Bits

Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.

Example:
For num = 5 you should return [0,1,1,2,1,2].

Follow up:

  • It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
  • Space complexity should be O(n).
  • Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.


这又是一道二进制的题目,需要使用n线性复杂度的算法,想了一下,应该是需要动态规划的方法来依次输出结果。其实写几个数的二进制表达式就很明显了。因为二进制每增加一位,增加的数的个数正好是这个数以前所有数的个数。我们这么理解,意思就是在这个数之前所有的数的二进制表达式前加上一个1,恰好是接下来2^的j次方数的二进制表达式。所以我们就有了一种动态规划的思路:


class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> result(num+1);
        result[0] = 0;
        result[1] = 1;
        for(int i =2,j=1;i<=num;++i)
        {
            int k = pow(2,j);
            if(i<pow(2,j))
                result[i] = result[i-k/2]+1;
            else if(i == k)
            {
                result[i] = 1;
                j++;
            }
        }
        return result;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值