目录
一、原文
二、绘制高维降维图例
2.1、绘制PCA降维至2维图例
import numpy as np
from sklearn.decomposition import PCA
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt
import scikitplot as skplt
X,y = load_digits(return_X_y=True)
pca = PCA(n_components=2,random_state=1)
pca.fit(X)
ax = skplt.decomposition.plot_pca_2d_projection(pca,X,y)
# 在数据点上加入标签
pca_x = pca.transform(X)
for i,txt in enumerate(y):
ax.annotate(txt,(pca_x[i,0],pca_x[i,1]))
plt.show()