import torch
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
from torch import nn
import torch.autograd as autograd
import matplotlib.pyplot as plt
import os
import numpy as np
import matplotlib
def to_img(x):
x = 0.5 * (x + 1)
x = x.clamp(0, 1)
x = x.view(x.size(0),1,28,28)
return x
def imshow(img,filename=None):
npimg = img.numpy()
plt.axis('off')
array = np.transpose(npimg, (1, 2, 0))
if filename!=None:
matplotlib.image.imsave(filename, array)
else:
plt.imshow(array )
# plt.savefig(filename) 保存图片
plt.show()
data_dir = './fashion_mnist/'
train_dataset = torchvision.datasets.FashionMNIST(data_dir, train=True,
transform=img_transform,download=True)
#train_loader = DataLoader(train_dataset,batch_size=1024, shuffle=True)
train_loader = DataLoader(train_dataset,batch_size=256, shuffle=True)
val_dataset = torchvision.datasets.FashionMNIST(data_dir, train=False,
transform=img_transform)
test_loader = DataLoader(val_dataset, batch_size=10, shuffle=False)
#指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
class WGAN_D(nn.Module):
def __init__(self,inputch=1):
super(WGAN_D, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(inputch, 64,4, 2, 1), # batch, 64, 28, 28
nn.LeakyReLU(0.2, True),
nn.InstanceNorm2d(64, affine=True) )
self.conv2 = nn.Sequential(
nn.Conv2d(64, 128,4, 2, 1), # batch, 64, 14, 14
nn.LeakyReLU(0.2, True),
nn.InstanceNorm2d(128, affine=True) )
self.fc = nn.Sequential(
nn.Linear(128*7*7, 1024),
nn.LeakyReLU(0.2, True), )
self.fc2 =nn.Sequential(
nn.InstanceNorm1d(1, affine=True),
nn.Flatten(),
nn.Linear(1024, 1) )
def forward(self, x,*arg):#batch, width, height, channel=1
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
x = x.reshape(x.size(0),1, -1)
x = self.fc2(x)
return x.view(-1, 1).squeeze(1)
class WGAN_G(nn.Module):
def __init__(self, input_size,input_n=1):
super(WGAN_G, self).__init__()
self.fc1 = nn.Sequential(
nn.Linear(input_size*input_n, 1024),
nn.ReLU(True),
nn.BatchNorm1d(1024) )
self.fc2 = nn.Sequential(
nn.Linear(1024,7*7*128),
nn.ReLU(True),
nn.BatchNorm1d(7*7*128) )
self.upsample1 = nn.Sequential(
nn.ConvTranspose2d(128, 64, 4, 2, padding=1, bias=False), # batch, 64, 14, 14
nn.ReLU(True),
nn.BatchNorm2d(64) )
self.upsample2 = nn.Sequential(
nn.ConvTranspose2d(64, 1, 4, 2, padding=1, bias=False), # batch, 64, 28, 28
nn.Tanh(), )
def forward(self, x,*arg):
x = self.fc1(x)
x = self.fc2(x)
x = x.view(x.size(0), 128, 7, 7)
x = self.upsample1(x)
img = self.upsample2(x)
return img
# Loss weight for gradient penalty
lambda_gp = 10
def compute_gradient_penalty(D, real_samples, fake_samples,y_one_hot):
eps = torch.FloatTensor(real_samples.size(0),1,1,1).uniform_(0,1).to(device)
# Get random interpolation between real and fake samples
X_inter = (eps * real_samples + ((1 - eps) * fake_samples)).requires_grad_(True)
d_interpolates = D(X_inter,y_one_hot)
fake = torch.full((real_samples.size(0), ), 1, device=device)
# Get gradient
gradients = autograd.grad( outputs=d_interpolates,
inputs=X_inter,
grad_outputs=fake,
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = gradients.view(gradients.size(0), -1)
gradient_penaltys = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * lambda_gp
return gradient_penaltys
def train(D,G,outdir,z_dimension ,num_epochs = 30):
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.001)
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.001)
os.makedirs(outdir, exist_ok=True)
# train
for epoch in range(num_epochs):
for i, (img, lab) in enumerate(train_loader):
num_img = img.size(0)
# =================train discriminator
real_img = img.to(device)
y_one_hot = torch.zeros(lab.shape[0],10).scatter_(1,
lab.view(lab.shape[0],1),1).to(device)
for ii in range(5):
d_optimizer.zero_grad()
# compute loss of real_img
real_out = D(real_img,y_one_hot)# closer to 1 means better
# compute loss of fake_img
z = torch.randn(num_img, z_dimension).to(device)
fake_img = G(z,y_one_hot)
fake_out = D(fake_img,y_one_hot)# closer to 0 means better
gradient_penalty = compute_gradient_penalty(D,
real_img.data, fake_img.data,y_one_hot)
# Loss measures generator's ability to fool the discriminator
d_loss = -torch.mean(real_out) + torch.mean(fake_out) + gradient_penalty
d_loss.backward()
d_optimizer.step()
# ===============train generator
# compute loss of fake_img
for ii in range(1):
g_optimizer.zero_grad()
z = torch.randn(num_img, z_dimension).to(device)
fake_img = G(z,y_one_hot)
fake_out = D(fake_img,y_one_hot)
g_loss = -torch.mean(fake_out)
g_loss.backward()
g_optimizer.step()
fake_images = to_img(fake_img.cpu().data)
real_images = to_img(real_img.cpu().data)
rel = torch.cat([to_img(real_images[:10]),fake_images[:10]],axis = 0)
imshow(torchvision.utils.make_grid(rel,nrow=10),
os.path.join(outdir, 'fake_images-{}.png'.format(epoch+1) ) )
print('Epoch [{}/{}], d_loss: {:.6f}, g_loss: {:.6f} '
'D real: {:.6f}, D fake: {:.6f}'
.format(epoch, num_epochs, d_loss.data, g_loss.data,
real_out.data.mean(), fake_out.data.mean()))
torch.save(G.state_dict(), os.path.join(outdir, 'generator.pth' ) )
torch.save(D.state_dict(), os.path.join(outdir, 'discriminator.pth' ) )
def displayAndTest(D,G,z_dimension):
# 可视化结果
sample = iter(test_loader)
#|images, labels = sample.next()
images,labels = next(sample)
y_one_hot = torch.zeros(labels.shape[0],10).scatter_(1,
labels.view(labels.shape[0],1),1).to(device)
num_img = images.size(0)
with torch.no_grad():
z = torch.randn(num_img, z_dimension).to(device)
fake_img = G(z,y_one_hot)
fake_images = to_img(fake_img.cpu().data)
rel = torch.cat([to_img(images[:10]),fake_images[:10]],axis = 0)
imshow(torchvision.utils.make_grid(rel,nrow=10))
print(labels[:10])
if __name__ == '__main__':
z_dimension = 40 # noise dimension
D = WGAN_D().to(device) # discriminator model
G = WGAN_G(z_dimension).to(device) # generator model
train(D,G,'./w_img',z_dimension)
displayAndTest(D,G,z_dimension)