简介
mycat支持多种数据库
mycat架构
一、海量数据解决方案
1、垂直拆分
一个库中存在海量表
2、水平拆分
一个表中存在海量数据(分片)
二、MyCat分片策略
Schema:逻辑库
Table:逻辑表
Datanode:物理库
安装
1、下载
官方网站:
http://www.mycat.org.cn/
github地址
https://github.com/MyCATApache
2、安装
第一步:把MyCat的压缩包上传到linux服务器
第二步:解压缩,得到mycat目录
第三步:进入mycat/bin,启动MyCat
启动命令:./mycat start
停止命令:./mycat stop
重启命令:./mycat restart
注意:mysql表名大小写设置;可以使用mysql的客户端直接连接mycat服务。默认服务端口为8066
分片规则
常用的分片规则:总共十个(基本够用)
一、枚举法
<tableRule name="sharding-by-intfile">
<rule>
<columns>user_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">0</property>
<property name="defaultNode">0</property>
</function>
partition-hash-int.txt 配置:
10000=0
10010=1
上面columns 标识将要分片的表字段,algorithm 分片函数,
其中分片函数配置中,mapFile标识配置文件名称,type默认值为0,0表示Integer,非零表示String,
所有的节点配置都是从0开始,及0代表节点1
/**
* defaultNode 默认节点:小于0表示不设置默认节点,大于等于0表示设置默认节点,结点为指定的值
*
默认节点的作用:枚举分片时,如果碰到不识别的枚举值,就让它路由到默认节点
* 如果不配置默认节点(defaultNode值小于0表示不配置默认节点),碰到
* 不识别的枚举值就会报错,
* like this:can't find datanode for sharding column:column_name val:ffffffff
*/
二、固定分片hash算法
<tableRule name="rule1">
<rule>
<columns>user_id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">2,1</property>
<property name="partitionLength">256,512</property>
</function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
partitionCount 分片个数列表,partitionLength 分片范围列表
分区长度:默认为最大2^n=1024 ,即最大支持1024分区
约束 :
count,length两个数组的长度必须是一致的。
1024 = sum((count[i]*length[i])). count和length两个向量的点积恒等于1024
用法例子:
@Test
public void testPartition() {
// 本例的分区策略:希望将数据水平分成3份,前两份各占25%,第三份占50%。(故本例非均匀分区)
// |<---------------------1024------------------------>|
// |<----256--->|<----256--->|<----------512---------->|
// | partition0 | partition1 | partition2 |
// | 共2份,故count[0]=2 | 共1份,故count[1]=1 |
int[] count = new int[] { 2, 1 };
int[] length = new int[] { 256, 512 };
PartitionUtil pu = new PartitionUtil(count, length);
// 下面代码演示分别以offerId字段或memberId字段根据上述分区策略拆分的分配结果
int DEFAULT_STR_HEAD_LEN = 8; // cobar默认会配置为此值
long offerId = 12345;
String memberId = "qiushuo";
// 若根据offerId分配,partNo1将等于0,即按照上述分区策略,offerId为12345时将会被分配到partition0中
int partNo1 = pu.partition(offerId);
// 若根据memberId分配,partNo2将等于2,即按照上述分区策略,memberId为qiushuo时将会被分到partition2中
int partNo2 = pu.partition(memberId, 0, DEFAULT_STR_HEAD_LEN);
Assert.assertEquals(0, partNo1);
Assert.assertEquals(2, partNo2);
}
如果需要平均分配设置:平均分为4分片,partitionCount*partitionLength=1024
<function name="func1" class="org.opencloudb.route.function.PartitionByLong">
<property name="partitionCount">4</property>
<property name="partitionLength">256</property>
</function>
三、范围约定
<tableRule name="auto-sharding-long">
<rule>
<columns>user_id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
</function>
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2
或
0-10000000=0
10000001-20000000=1
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
rang-long 函数中mapFile代表配置文件路径
所有的节点配置都是从0开始,及0代表节点1,此配置非常简单,即预先制定可能的id范围到某个分片
四、求模法
<tableRule name="mod-long">
<rule>
<columns>user_id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">3</property>
</function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
此种配置非常明确即根据id与count(你的结点数)进行求模预算,相比方式1,此种在批量插入时需要切换数据源,id不连续
五、日期列分区法
<tableRule name="sharding-by-date">
<rule>
<columns>create_time</columns>
<algorithm>sharding-by-date</algorithm>
</rule>
</tableRule>
<function name="sharding-by-date" class="io.mycat.route.function..PartitionByDate">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2014-01-01</property>
<property name="sPartionDay">10</property>
</function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,
配置中配置了开始日期,分区天数,即默认从开始日期算起,分隔10天一个分区
还有一切特性请看源码
Assert.assertEquals(true, 0 == partition.calculate("2014-01-01"));
Assert.assertEquals(true, 0 == partition.calculate("2014-01-10"));
Assert.assertEquals(true, 1 == partition.calculate("2014-01-11"));
Assert.assertEquals(true, 12 == partition.calculate("2014-05-01"));
六、通配取模
<tableRule name="sharding-by-pattern">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-pattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPattern">
<property name="patternValue">256</property>
<property name="defaultNode">2</property>
<property name="mapFile">partition-pattern.txt</property>
</function>
partition-pattern.txt
# id partition range start-end ,data node index
###### first host configuration
1-32=0
33-64=1
65-96=2
97-128=3
######## second host configuration
129-160=4
161-192=5
193-224=6
225-256=7
0-0=7
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,defaoultNode 默认节点,如果不配置了默认,则默认是0即第一个结点
mapFile 配置文件路径
配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推,如果id非数字数据,则会分配在defaoultNode 默认节点
String idVal = "0";
Assert.assertEquals(true, 7 == autoPartition.calculate(idVal));
idVal = "45a";
Assert.assertEquals(true, 2 == autoPartition.calculate(idVal));
七、ASCII码求模通配
<tableRule name="sharding-by-prefixpattern">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-prefixpattern</algorithm>
</rule>
</tableRule>
<function name="sharding-by-pattern" class="io.mycat.route.function.PartitionByPrefixPattern">
<property name="patternValue">256</property>
<property name="prefixLength">5</property>
<property name="mapFile">partition-pattern.txt</property>
</function>
partition-pattern.txt
# range start-end ,data node index
# ASCII
# 48-57=0-9
# 64、65-90=@、A-Z
# 97-122=a-z
###### first host configuration
1-4=0
5-8=1
9-12=2
13-16=3
###### second host configuration
17-20=4
21-24=5
25-28=6
29-32=7
0-0=7
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数,patternValue 即求模基数,prefixLength ASCII 截取的位数
mapFile 配置文件路径
配置文件中,1-32 即代表id%256后分布的范围,如果在1-32则在分区1,其他类推
此种方式类似方式6只不过采取的是将列种获取前prefixLength位列所有ASCII码的和进行求模sum%patternValue ,获取的值,在通配范围内的
即 分片数,
/**
* ASCII编码:
* 48-57=0-9阿拉伯数字
* 64、65-90=@、A-Z
* 97-122=a-z
*
*/
如
String idVal="gf89f9a";
Assert.assertEquals(true, 0==autoPartition.calculate(idVal));
idVal="8df99a";
Assert.assertEquals(true, 4==autoPartition.calculate(idVal));
idVal="8dhdf99a";
Assert.assertEquals(true, 3==autoPartition.calculate(idVal));
八、编程指定
<tableRule name="sharding-by-substring">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-substring</algorithm>
</rule>
</tableRule>
<function name="sharding-by-substring" class="io.mycat.route.function.PartitionDirectBySubString">
<property name="startIndex">0</property> <!-- zero-based -->
<property name="size">2</property>
<property name="partitionCount">8</property>
<property name="defaultPartition">0</property>
</function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数
此方法为直接根据字符子串(必须是数字)计算分区号(由应用传递参数,显式指定分区号)。
例如id=05-100000002
在此配置中代表根据id中从startIndex=0,开始,截取siz=2位数字即05,05就是获取的分区,如果没传默认分配到defaultPartition
九、字符串拆分hash解析
<tableRule name="sharding-by-stringhash">
<rule>
<columns>user_id</columns>
<algorithm>sharding-by-stringhash</algorithm>
</rule>
</tableRule>
<function name="sharding-by-substring" class="io.mycat.route.function.PartitionByString">
<property name=length>512</property> <!-- zero-based -->
<property name="count">2</property>
<property name="hashSlice">0:2</property>
</function>
配置说明:
上面columns 标识将要分片的表字段,algorithm 分片函数
函数中length代表字符串hash求模基数,count分区数,hashSlice hash预算位
即根据子字符串 hash运算
hashSlice : 0 means str.length(), -1 means str.length()-1
/**
* "2" -> (0,2)<br/>
* "1:2" -> (1,2)<br/>
* "1:" -> (1,0)<br/>
* "-1:" -> (-1,0)<br/>
* ":-1" -> (0,-1)<br/>
* ":" -> (0,0)<br/>
*/
public class PartitionByStringTest {
@Test
public void test() {
PartitionByString rule = new PartitionByString();
String idVal=null;
rule.setPartitionLength("512");
rule.setPartitionCount("2");
rule.init();
rule.setHashSlice("0:2");
// idVal = "0";
// Assert.assertEquals(true, 0 == rule.calculate(idVal));
// idVal = "45a";
// Assert.assertEquals(true, 1 == rule.calculate(idVal));
//last 4
rule = new PartitionByString();
rule.setPartitionLength("512");
rule.setPartitionCount("2");
rule.init();
//last 4 characters
rule.setHashSlice("-4:0");
idVal = "aaaabbb0000";
Assert.assertEquals(true, 0 == rule.calculate(idVal));
idVal = "aaaabbb2359";
Assert.assertEquals(true, 0 == rule.calculate(idVal));
}
十、一致性hash
<tableRule name="sharding-by-murmur">
<rule>
<columns>user_id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>
<function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0</property><!-- 默认是0-->
<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片—>
<property name="virtualBucketTimes">160</property><!-- 一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍-->
<!--
<property name="weightMapFile">weightMapFile</property>
节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替 -->
<!--
<property name="bucketMapPath">/etc/mycat/bucketMapPath</property>
用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
</function>
一致性hash预算有效解决了分布式数据的扩容问题,前1-9中id规则都多少存在数据扩容难题,而10规则解决了数据扩容难点
MyCat集群
mycat做了数据库的代理,在高并发的情况下,必然也会面临单节点性能问题,所以需要部署多个mycat节点。
cp mycat mycat2 -R
vim wrapper.conf
#设置jmx端口
wrapper.java.additional.7=-Dcom.sun.management.jmxremote.port=1985
vim server.xml
#设置服务端口以及管理端口
<property name="serverPort">8067</property>
<property name="managerPort">9067</property>
#重新启动服务
./startup_nowrap.sh
tail -f ../logs/mycat.log
表分片实现
1、配置分片
1)schema.xml
如:配置一个数据库e3mall-32,其中有一张表tb_item
该表数据分片到三个数据库(其中一个物理库有两个库),分片规则按主键(一张表主键id值5000000数据三个数据库记录超过15000000将无法插入数据),
2)server.xml
配置数据库用户名和密码
2、配置读写分离
注意:配置对应的两台mysql服务需要配置主从分离
配置说明:
(1) 设置 balance="1"与writeType=“0”
Balance参数设置:
- balance=“0”, 所有读操作都发送到当前可用的writeHost上。
- balance=“1”,所有读操作都随机的发送到readHost。
- balance=“2”,所有读操作都随机的在writeHost、readhost上分发
WriteType参数设置: - writeType=“0”, 所有写操作都发送到可用的writeHost上。
- writeType=“1”,所有写操作都随机的发送到readHost。
- writeType=“2”,所有写操作都随机的在writeHost、readhost分上发。
“readHost是从属于writeHost的,即意味着它从那个writeHost获取同步数据,因此,当它所属的writeHost宕机了,则它也不会再参与到读写分离中来,即“不工作了”,这是因为此时,它的数据已经“不可靠”了。基于这个考虑,目前mycat 1.3和1.4版本中,若想支持MySQL一主一从的标准配置,并且在主节点宕机的情况下,从节点还能读取数据,则需要在Mycat里配置为两个writeHost并设置banlance=1。”
(2) 设置 switchType=“2” 与slaveThreshold=“100”
switchType 目前有三种选择:
-1:表示不自动切换
1 :默认值,自动切换
2 :基于MySQL主从同步的状态决定是否切换
“Mycat心跳检查语句配置为 show slave status ,dataHost 上定义两个新属性: switchType=“2” 与slaveThreshold=“100”,此时意味着开启MySQL主从复制状态绑定的读写分离与切换机制。Mycat心跳机制通过检测 show slave status 中的 “Seconds_Behind_Master”, “Slave_IO_Running”, “Slave_SQL_Running” 三个字段来确定当前主从同步的状态以及Seconds_Behind_Master主从复制时延。“
案例
读写分离
MyCat做中间件,实现读写分离
1、基本环境
两台数据库,配置了读写分离
2、server.xml配置
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mycat:server SYSTEM "server.dtd">
<mycat:server xmlns:mycat="http://io.mycat/">
<system>
<property name="nonePasswordLogin">0</property>
<property name="useHandshakeV10">1</property>
<property name="useSqlStat">0</property>
<property name="useGlobleTableCheck">0</property>
<property name="sequnceHandlerType">2</property>
<property name="subqueryRelationshipCheck">false</property>
<property name="processorBufferPoolType">0</property>
<property name="handleDistributedTransactions">0</property>
<property name="useOffHeapForMerge">1</property>
<property name="memoryPageSize">64k</property>
<property name="spillsFileBufferSize">1k</property>
<property name="useStreamOutput">0</property>
<property name="systemReserveMemorySize">384m</property>
<property name="useZKSwitch">false</property>
</system>
<!--这里是设置的itcast用户和虚拟逻辑库-->
<user name="itcast" defaultAccount="true">
<property name="password">itcast123</property>
<property name="schemas">itcast</property>
</user>
</mycat:server>
3、schema.xml配置
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<!--配置数据表-->
<schema name="itcast" checkSQLschema="false" sqlMaxLimit="100">
<table name="tb_ad" dataNode="dn1" rule="mod-long" />
</schema>
<!--配置分片关系-->
<dataNode name="dn1" dataHost="cluster1" database="itcast" />
<!--配置连接信息-->
<dataHost name="cluster1" maxCon="1000" minCon="10" balance="3"
writeType="1" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="W1" url="192.168.1.18:3306" user="root"
password="root">
<readHost host="W1R1" url="192.168.1.18:3307" user="root"
password="root" />
</writeHost>
</dataHost>
</mycat:schema>
balance属性说明: 负载均衡类型,目前的取值有3 种:
- balance=“0”, 不开启读写分离机制,所有读操作都发送到当前可用的writeHost 上。
- balance=“1”,全部的readHost 与stand by writeHost 参与select 语句的负载均衡,简单的说,当双 主 双从模式(M1->S1,M2->S2,并且M1 与M2 互为主备),正常情况下,M2,S1,S2 都参与select 语句的负 载均衡。
- balance=“2”,所有读操作都随机的在writeHost、readhost 上分发。
- balance=“3”,所有读请求随机的分发到wiriterHost 对应的readhost 执行,writerHost 不负担读压 力, 注意balance=3 只在1.4 及其以后版本有,1.3 没有
4、rule.xml配置
<tableRule name="mod-long">
<rule>
<columns>id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<property name="count">1</property>
</function>
数据分片
MyCat做中间件,实现指定表数据分片和读写分离存储
1、配置Master
#搭建master
#创建目录
mkdir /data/mysql/master02
cd /data/mysql/master02
mkdir conf data
chmod 777 * -R
#创建配置文件
cd /data/mysql/master02/conf
vim my.cnf
#输入如下内容
[mysqld]
log-bin=mysql-bin #开启二进制日志
server-id=1 #服务id,不可重复 sql_mode='STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO ,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION'
#创建容器
docker create --name percona-master02 -v /data/mysql/master02/data:/var/lib/mysql -v /data/mysql/master02/conf:/etc/my.cnf.d -p 3316:3306 -e MYSQL_ROOT_PASSWORD=root percona:5.7.23
#启动
docker start percona-master02 && docker logs -f percona-master02
#创建同步账户以及授权
create user 'itcast'@'%' identified by 'itcast';
grant replication slave on *.* to 'itcast'@'%';
flush privileges;
#查看master状态
show master status;
2、配置Slave
#搭建从库
#创建目录
mkdir /data/mysql/slave02
cd /data/mysql/slave02
mkdir conf data
chmod 777 * -R
#创建配置文件
cd /data/mysql/slave02/conf
vim my.cnf
#输入如下内容
[mysqld]
server-id=2 #服务id,不可重复 sql_mode='STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO ,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION'
#创建容器
docker create --name percona-slave02 -v /data/mysql/slave02/data:/var/lib/mysql -v /data/mysql/slave02/conf:/etc/my.cnf.d -p 3317:3306 -e MYSQL_ROOT_PASSWORD=root percona:5.7.23
#启动
docker start percona-slave02 && docker logs -f percona-slave02
#设置master相关信息
CHANGE MASTER TO
master_host='192.168.1.18',
master_user='itcast',
master_password='itcast',
master_port=3316,
master_log_file='xxxxxx',
master_log_pos=xxxx;
#启动同步
start slave;
#查看master状态
show slave status;
3、MyCat配置文件----schema.xml
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<!--配置数据表-->
<schema name="itcast" checkSQLschema="false" sqlMaxLimit="100">
<table name="tb_ad" dataNode="dn1,dn2" rule="mod-long" />
</schema>
<!--配置分片关系-->
<dataNode name="dn1" dataHost="cluster1" database="itcast" />
<dataNode name="dn2" dataHost="cluster2" database="itcast" />
<!--配置连接信息-->
<dataHost name="cluster1" maxCon="1000" minCon="10" balance="3" writeType="1" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="W1" url="192.168.1.18:3306" user="root" password="root">
<readHost host="W1R1" url="192.168.1.18:3307" user="root" password="root" />
</writeHost>
</dataHost>
<dataHost name="cluster2" maxCon="1000" minCon="10" balance="3" writeType="1" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="W2" url="192.168.1.18:3316" user="root" password="root">
<readHost host="W2R1" url="192.168.1.18:3317" user="root" password="root" />
</writeHost>
</dataHost>
</mycat:schema>
4、MyCat配置文件----rule.xml
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<property name="count">2</property>
</function>
5、重启MyCat
./startup_nowrap.sh && tail -f ../logs/mycat.log