CodeForces 954D Fight Against Traffic (最短路)

本文探讨了一道复杂的问题:在一个由n个路口和m条道路组成的交通网络中,如何新增一条道路,使得从指定起点到终点的最短路径不会缩短。通过使用Dijkstra算法计算所有点到起点和终点的最短距离,我们找到了一种有效的方法来确定可能的新道路位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fight Against Traffic

time limit per test 1 second

memory limit per test  256 megabytes

Little town Nsk consists of n junctions connected by m bidirectional roads. Each road connects two distinct junctions and no two roads connect the same pair of junctions. It is possible to get from any junction to any other junction by these roads. The distance between two junctions is equal to the minimum possible number of roads on a path between them.

In order to improve the transportation system, the city council asks mayor to build one new road. The problem is that the mayor has just bought a wonderful new car and he really enjoys a ride from his home, located near junction s to work located near junction t. Thus, he wants to build a new road in such a way that the distance between these two junctions won't decrease.

You are assigned a task to compute the number of pairs of junctions that are not connected by the road, such that if the new road between these two junctions is built the distance between s and t won't decrease.

Input

The firt line of the input contains integers nms and t (2 ≤ n ≤ 1000, 1 ≤ m ≤ 1000, 1 ≤ s, t ≤ ns ≠ t) — the number of junctions and the number of roads in Nsk, as well as the indices of junctions where mayors home and work are located respectively. The i-th of the following m lines contains two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi), meaning that this road connects junctions ui and vi directly. It is guaranteed that there is a path between any two junctions and no two roads connect the same pair of junctions.

Output

Print one integer — the number of pairs of junctions not connected by a direct road, such that building a road between these two junctions won't decrease the distance between junctions s and t.

Examples

input

5 4 1 5
1 2
2 3
3 4
4 5

output

0

input

5 4 3 5
1 2
2 3
3 4
4 5

output

5

input

5 6 1 5
1 2
1 3
1 4
4 5
3 5
2 5

output

3

题目大意:有n个路口,m条路,每条路一样长。s和t分别为离家和工作点最近的路口。直接相连两个路口只能有一条路。添加一条路并且不缩短家和工作点的最短路程,问最多有多少种添法。

题目解析:题目要求的是添加一条路,可以直接用 dijkstra最短路算法计算出所有点到s和t的最短路程,然后遍历每一个可能存在的边,判断是否缩短了s和t的最短路程,再选择添加。

代码如下:

#define cin0  ios::sync_with_stdio(0),cin.tie(0);
#define ull unsigned long long 
#define inf 0x3f3f3f3f
#define ll long long 
#include <algorithm>
#include <iostream>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <bitset>
#include <vector>
#include <math.h>
#include <queue>
#include <stack>
#include <map>
using namespace std;
const int man=1e5+50;
#define inf 0x3f3f3f3f
const ll mod=1000000007;
ll ds[1050],dt[1050];
int v[1050];
vector<ll >g[1050];
ll n,m,s,t;
void dijkstra(ll p,ll dis[])
{
	memset(v,0,sizeof v);
	for(int i=0;i<=n;i++){
		dis[i]=inf;
	}
	dis[p]=0;
	for(int i=0;i<n;i++){
		ll minn=inf,u=0;
		for(int j=1;j<=n;j++){
			if(!v[j]&&dis[j]<minn){
				minn=dis[j];
				u=j;
			}
		}
		v[u]=1;
		for(int j=0;j<g[u].size();j++){
			ll l=g[u][j];
			if(dis[l]>dis[u]+1){
				dis[l]=dis[u]+1;
			}
		}
	}	
}
int main()
{
	ll a,b;
	cin>>n>>m>>s>>t;
	for(int i=0;i<m;i++){
		cin>>a>>b;
		g[a].push_back(b);
		g[b].push_back(a);
	}
	dijkstra(s,ds);
	dijkstra(t,dt);
	ll len=ds[t];
	ll ans=0;
	for(int i=1;i<=n;i++){
		for(int j=i+1;j<=n;j++){
			if(ds[i]+dt[j]+1>=len&&ds[j]+dt[i]+1>=len)	{
				ans++;
				cout<<"i"<<i<<" j"<<j<<endl;
			}
		}
	}
	cout<<ans-m<<endl;//这时ans包括已经存在的边,输出时要去掉
	return 0;
 } 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值