295. Find Median from Data Stream

Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

Examples: 

[2,3,4] , the median is 3

[2,3], the median is (2 + 3) / 2 = 2.5

Design a data structure that supports the following two operations:

  • void addNum(int num) - Add a integer number from the data stream to the data structure.

  • double findMedian() - Return the median of all elements so far.
解题思路:我开始考虑使用插入排序来做,这样达到的时间复杂度为O(n),后面发现判题盘不过,估计题目要求的时间复杂度为O(logN),后面考虑用大根堆,小根堆来做。

class MedianFinder:
    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.data=[]
    def addNum(self, num):
        """
        Adds a num into the data structure.
        :type num: int
        :rtype: void
        """
        self.data.append(num)
        length=len(self.data)
        
        if length>1:
            j=length-2
            while j>=0 and num < self.data[j]:
                self.data[j+1]=self.data[j]
                j-=1
            self.data[j+1]=num
    def findMedian(self):
        """
        Returns the median of current data stream
        :rtype: float
        """
        length=len(self.data)
        if length%2!=0:
            return self.data[length/2]
        else:
            return (self.data[length/2-1]+self.data[length/2])/2

大根堆小根堆:
import heapq

class MedianFinder:
    def __init__(self):
        """
        Initialize your data structure here.
        """
        self.minHeap=[]
        self.maxHeap=[]



    def addNum(self, num):
        """
        Adds a num into the data structure.
        :type num: int
        :rtype: void
        """
        if len(self.maxHeap)==len(self.minHeap):
            heapq.heappush(self.maxHeap,-heapq.heappushpop(self.minHeap,num))
        else:
            heapq.heappush(self.minHeap,-heapq.heappushpop(self.maxHeap,-num))



    def findMedian(self):
        """
        Returns the median of current data stream
        :rtype: float
        """
        if len(self.maxHeap)==len(self.minHeap):
            return (-self.maxHeap[0]+self.minHeap[0])/2.0
        else:
            return -self.maxHeap[0]


# Your MedianFinder object will be instantiated and called as such:
mf = MedianFinder()
mf.addNum(1)
mf.addNum(3)
mf.addNum(2)
print mf.findMedian()

参考博客:http://bookshadow.com/weblog/2015/10/19/leetcode-find-median-data-stream/


分析下列代码作用,用for循环达成效果 代码如下: df_cleanID['是否吃大米'].median() df_cleanID['平均每次食用量'].median() df_cleanID['是否吃小麦面粉'].median() df_cleanID['平均每次食用量.1'].median() df_cleanID['是否吃杂粮'].median() df_cleanID['平均每次食用量.2'].median() df_cleanID['是否吃薯类'].median() df_cleanID['平均每次食用量.3'].median() df_cleanID['是否吃油炸面食'].median() df_cleanID['平均每次食用量.4'].median() df_cleanID['是否吃猪肉'].median() df_cleanID['平均每次食用量.5'].median() df_cleanID['是否吃牛羊肉'].median() df_cleanID['平均每次食用量.6'].median() df_cleanID['是否吃禽肉'].median() df_cleanID['平均每次食用量.7'].median() df_cleanID['是否吃内脏类'].median() df_cleanID['平均每次食用量.8'].median() df_cleanID['是否吃水产类'].median() df_cleanID['平均每次食用量.9'].median() df_cleanID['是否吃鲜奶'].median() df_cleanID['平均每次食用量.10'].median() df_cleanID['是否吃奶粉'].median() df_cleanID['平均每次食用量.11'].median() df_cleanID['是否吃酸奶'].median() df_cleanID['平均每次食用量.12'].median() df_cleanID['是否吃蛋类'].median() df_cleanID['平均每次食用量.13'].median() df_cleanID['是否吃豆腐'].median() df_cleanID['平均每次食用量.14'].median() df_cleanID['是否吃豆腐丝等'].median() df_cleanID['平均每次食用量.15'].median() df_cleanID['是否吃豆浆'].median() df_cleanID['平均每次食用量.16'].median() df_cleanID['是否吃干豆'].median() df_cleanID['平均每次食用量.17'].median() df_cleanID['是否吃新鲜蔬菜'].median() df_cleanID['平均每次食用量.18'].median() df_cleanID['是否吃海草类'].median() df_cleanID['平均每次食用量.19'].median() df_cleanID['是否吃咸菜'].median() df_cleanID['平均每次食用量.20'].median() df_cleanID['是否吃泡菜'].median() df_cleanID['平均每次食用量.21'].median() df_cleanID['是否吃酸菜'].median() df_cleanID['平均每次食用量.22'].median() df_cleanID['是否吃糕点'].median() df_cleanID['平均每次食用量.23'].median() df_cleanID['是否吃水果'].median() df_cleanID['平均每次食用量.24'].median() df_cleanID['是否吃果汁饮料'].median() df_cleanID['平均每次食用量.25'].median() df_cleanID['是否吃其他饮料'].median() df_cleanID['平均每次食用量.26'].median()
03-30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值